Publications by authors named "Meareg Amare"

Origin discrimination of sesame seeds is becoming one of the important factors for the sesame seed trade in Ethiopia as it influences the market price. This study was undertaken to construct accurate geographical origin discriminant models for Ethiopian sesame seeds using multi-element analysis and statistical tools. The concentration of 12 elements (Na, Mg, Cr, Mn, Fe, Cu, Co, Ni, Zn, Cd, As and Pb) were determined in 93 samples which were collected from three main sesame seed-producing regions in Ethiopia, Gondar, Humera and Wollega.

View Article and Find Full Text PDF

A one step facile synthesis of the novel diaquabis(1,10-phenanthroline)copper(II)chloride (APCuC) complex is demonstrated. Cyclic voltammetric and electrochemical impedance spectroscopic results revealed potentiodynamic deposition of a conductive electroactive poly(APCuC) film on the glassy carbon electrode surface increasing its effective surface area. In contrast to the unmodified glassy carbon electrode, appearance of an oxidative peak at a reduced potential with over two fold current for amoxicillin at poly(APCuC)/GCE demonstrated its electrocatalytic property attributed to reduce charge transfer resistance and the improved surface area of the electrode surface.

View Article and Find Full Text PDF

This study covers the development of a fast, selective, sensitive, and stable method for the simultaneous determination of cephalosporins (cephalexin (CLN) and cefadroxil (CFL)) in biological fluids and tablet samples using potentiodynamic fabrication of a poly(resorcinol)-modified glassy carbon electrode (poly(reso)/GCE). The results of cyclic voltammetry and electrochemical impedance spectroscopy supported the modification of the GCE by a polymer layer that raised the electrode surface area and conductivity. At the poly(reso)/GCE, an irreversible oxidative peak with four- and fivefold current enhancement for CLN and CFL, respectively, at a substantially lower potential demonstrated the catalytic action of the modifier.

View Article and Find Full Text PDF

In this study, a square wave voltammetric method for determination of theophylline in tablet formulation based on EDTA salt modified carbon paste electrode is presented. CV, FT-IR, and EIS results confirmed modification of the carbon paste with EDTA salt. In contrast to the unmodified carbon paste electrode, the modified carbon paste electrode showed irreversible oxidation of theophylline with considerable current enhancement.

View Article and Find Full Text PDF

Background: Amoxicillin (AMX), which is one of the β-lactam antibiotics used in the treatment of bacterial infections, is known to have a serious mechanism of resistance necessitating continuous monitoring of its level in pharmaceutical and serum samples.

Results: In this study, we presented selective, accurate, and precise square wave voltammetric method based on poly(4-amino-3-hydroxynaphthalene-1-sulfonic acid) modified glassy carbon electrode (poly(AHNSA/GCE)) for determination of amoxicillin in four selected tablet brands. Appearance of a peak in the oxidative scan direction without a peak in the reductive direction of cyclic voltammograms of both bare GCE and poly(AHNSA/GCE) with four folds current and much reduced potential on the modified electrode showed catalytic property of the modifier towards oxidation of AMX.

View Article and Find Full Text PDF

A selective and sensitive electrochemical method based on glassy carbon electrode modified with poly(malachite green) was developed for determination of tetracycline in pharmaceutical capsule formulation. Cyclic voltammetry and electrochemical impedance spectroscopy using [Fe(CN)] as a probe were used to characterize the potentiodynamiclly deposited poly(malachite green) on the surface of glassy carbon electrode. In contrast to the unmodified glassy carbon electrode, the fabricated poly(malachite green) modified glassy carbon electrode showed catalytic property towards two steps irreversible oxidation of tetracycline.

View Article and Find Full Text PDF

Potentiodynamically fabricated poly(alizarin red s) modified GCE was characterized using CV and EIS techniques. In contrast to the cyclic voltammetric response of the unmodified GCE for metronidazole, an irreversible reduction peak with three-folds of current enhancement and reduced overpotential at the poly(alizarin red s) modified GCE showed the catalytic effect of the modifier towards reduction of metronidazole. While observed peak potential shift with increasing pH (4.

View Article and Find Full Text PDF

The principal objective of this research was to demonstrate the sensitivity and selectivity of carbon paste electrode modified with Ocimum Sanctum leaf extract synthesized silver nanoparticles for simultaneous determination of Cd(II) and Pb(II) in discharged textile effluent. While UV-Vis, XRD and FT-IR were used to fully characterize the green synthesized silver nanoparticles, cyclic voltammetry was used to evaluate the electrochemical behavior of the two metals at the modified electrode relative to the unmodified electrode. Square wave anodic stripping (SWAS) voltammetric current showed linear dependence on the concentration in the range 5-160 ppm with determination coefficients (R) of 0.

View Article and Find Full Text PDF

Although paracetamol is known to have excellent safety profile at recommended therapeutic doses, health effects are also reported at acute overdoses. A sensitive and selective voltammetric method using Fe(III) encapsulated zeolite/graphite composite modified glassy carbon electrode is presented in this work for the determination of paracetamol in tablet formulations. In contrast to the unmodified electrode, a fourfold increase of cyclic voltammetric oxidative peak current paralleled by reduced potential difference ( ) at the modified electrode confirmed electrocatalytic property of the modifier towards oxidation of paracetamol.

View Article and Find Full Text PDF

Iron (III) doped zeolite/graphite composite modified glassy carbon electrode was prepared for determination of uric acid in human urine samples. Electrochemical impedance spectroscopic and cyclic voltammetric results confirmed surface modification of the surface of glassy carbon electrodes. Appearance of oxidative peak current with an over threefold enhancement at significantly reduced overpotential for uric acid at the composite modified electrode relative to the unmodified and even graphite modified electrode confirmed the electrocatalytic property of the composite towards electrochemical oxidation of uric acid.

View Article and Find Full Text PDF

The composition and properties of natural honeys differ with plant species on which the bees forage and the climatic conditions of the production areas. In Ethiopia, Amhara and Tigray are neighboring regions consisting of different agricultural activities and blossoms from different types of vegetations which may influence the natural composition and hence the properties of honey. So, the aim of the current study was to assess the quality of honey from selected districts of the two regions.

View Article and Find Full Text PDF

A new method for determination of salbutamol sulfate has been developed using poly(4-amino-3-hydroxynaphthalene sulfonic acid/GCE. Cyclic voltammetric investigation of the electrochemical behavior of salbutamol sulfate at the polymer modified glassy carbon unveiled electrocatalytic activity of the modifier towards irreversible oxidation of salbutamol sulfate. Dependence of peak current predominantly on scan rate than on square root of scan rate, and peak potential shift with pH demonstrated that oxidation of salbutamol sulfate at the polymer modified electrode follows adsorption reaction kinetics with proton participation.

View Article and Find Full Text PDF

Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 × 10 to 100 × 10 mol L with determination coefficient and method detection limit (LoD = 3 s/slope) of 0.

View Article and Find Full Text PDF

Cyclic voltammetric investigation of metronidazole at carbon paste electrode revealed an irreversible reduction peak centered at about -0.4 V. Observed peak potential shift with pH in the range 2.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are transmembrane receptors that relay signals from the external environment inside the cell, allowing an organism to adapt to its surroundings. They are known to detect a vast array of ligands, including sugars, amino acids, pheromone peptides, nitrogen sources, oxylipins, and light. Despite their prevalence in fungal genomes, very little is known about the functions of filamentous fungal GPCRs.

View Article and Find Full Text PDF

A glassy carbon electrode (GCE) modified with poly(4-amino-3-hydroxynaphthalene sulfonic acid) (poly-AHNSA) was used for the selective and sensitive determination of fenitrothion (FT) organophosphorus pesticide in water. The electrochemical behavior of FT at the bare GCE and the poly-AHNSA/GCE were compared using cyclic voltammetry. Enhanced peak current response and shift to a lower potential at the polymer-modified electrode indicated the electrocatalytic activity of the polymer film towards FT.

View Article and Find Full Text PDF

The plant and human opportunistic fungus Aspergillus flavus is recognized for the production of the carcinogen aflatoxin. Although many reviews focus on the wealth of information known about aflatoxin biosynthesis, few articles describe other genes and molecules important for A. flavus development or secondary metabolism.

View Article and Find Full Text PDF

Glassy carbon electrode was modified by electropolymerization of 4-amino-3-hydroxynaphthalene sulfonic acid. Cyclic voltammetric study of quinine showed higher current response at the modified electrode compared to the bare and activated glassy carbon electrodes in pH 7.0 phosphate buffer solution.

View Article and Find Full Text PDF

4-Amino-3-hydroxynaphthalene sulfonic acid (AHNSA) was electropolymerized on a glassy carbon electrode. The deposited film showed electrocatalytic activity towards the oxidation of caffeine. The polymer-modified electrode showed high sensitivity, selectivity and stability in the determination of caffeine in coffee.

View Article and Find Full Text PDF