Publications by authors named "Meana J"

We aimed to determine the prevalence and clinical correlations of mood disorders in a sample of systemic lupus erythematosus (SLE) patients. Hence, we hypothesized that the prevalence of mood disorders would be lower than reported in the literature and that patients would remain clinically stable and show less damage accrual despite low-dose corticosteroid prescription. In total, 92 SLE outpatients gave informed consent to participate in this cross-sectional study.

View Article and Find Full Text PDF

Maternal immune activation (MIA) induces a variety of behavioral and brain abnormalities in offspring of rodent models, compatible with neurodevelopmental disorders, such as schizophrenia or autism. However, it remains controversial whether MIA impairs reversal learning, a basic expression of cognitive flexibility that seems to be altered in schizophrenia. In the present study, MIA was induced by administration of a single dose of polyriboinosinic-polyribocytidylic acid (Poly (I:C) (5 mg/kg i.

View Article and Find Full Text PDF

Neuropsychiatric and neurodegenerative disorders are frequently associated with gastrointestinal (GI) co-pathologies. Although the central and enteric nervous systems (CNS and ENS, respectively) have been studied separately, there is increasing interest in factors that may contribute to conditions affecting both systems. There is compelling evidence that serotonin (5-HT) may play an important role in several gut-brain disorders.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are sophisticated signaling machines able to simultaneously elicit multiple intracellular signaling pathways upon activation. Complete (in)activation of all pathways can be counterproductive for specific therapeutic applications. This is the case for the serotonin 2 A receptor (5-HTR), a prominent target for the treatment of schizophrenia.

View Article and Find Full Text PDF

Altered development and function of the prefrontal cortex (PFC) during adolescence is implicated in the origin of mental disorders. Deficits in the GABAergic system prominently contribute to these alterations. Nav1.

View Article and Find Full Text PDF

Previous studies have shown mitochondrial dysfunction in schizophrenia (SZ) patients, which may be caused by mitochondrial DNA (mtDNA) alterations. However, there are few studies in SZ that have analyzed mtDNA in brain samples by next-generation sequencing (NGS). To address this gap, we used mtDNA-targeted NGS and qPCR to characterize mtDNA alterations in brain samples from patients with SZ (n = 40) and healthy controls (HC) (n = 40).

View Article and Find Full Text PDF
Article Synopsis
  • Genome-wide association studies have identified over 270 genetic loci linked to schizophrenia, but these alone do not fully explain the condition's underlying molecular mechanisms.
  • The research focuses on how epigenetic factors, particularly histone modifications, can be influenced by environmental effects, like antipsychotic medications, and how these changes affect gene regulation.
  • Findings reveal significant epigenetic differences in the frontal cortex of schizophrenia patients, especially relating to specific transcription factors and age effects, highlighting the dynamic nature of these alterations due to treatment and developmental stages.
View Article and Find Full Text PDF

Background And Purpose: Whereas biased agonism on the 5-HT receptor has been ascribed to hallucinogenic properties of psychedelics, no information about biased inverse agonism on this receptor is available. In schizophrenia, increased 5-HT receptor constitutive activity has been suggested, highlighting the therapeutic relevance of inverse agonism. This study characterized the modulation of G protein activity promoted by different drugs, commonly considered as 5-HT receptor antagonists, in post-mortem human brain cortex.

View Article and Find Full Text PDF

Background: Susceptibility to schizophrenia is determined by interactions between genes and environment, possibly via epigenetic mechanisms. Schizophrenia has been associated with a restrictive epigenome, and histone deacetylase (HDAC) inhibitors have been postulated as coadjuvant agents to potentiate the efficacy of current antipsychotic drugs. We aimed to evaluate global histone posttranslational modifications (HPTMs) and HDAC expression and activity in the dorsolateral prefrontal cortex (DLPFC) of individuals with schizophrenia.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are tiny membranous structures that mediate intercellular communication. The role(s) of these vesicles have been widely investigated in the context of neurological diseases; however, their potential implications in the neuropathology subjacent to human psychiatric disorders remain mostly unknown. Here, by using next-generation discovery-driven proteomics, we investigate the potential role(s) of brain EVs (bEVs) in schizophrenia (SZ) by analyzing these vesicles from the three post-mortem anatomical brain regions: the prefrontal cortex (PFC), hippocampus (HC), and caudate (CAU).

View Article and Find Full Text PDF

The genome-wide DNA methylation profile, or DNA methylome, is a critical component of the overall epigenomic landscape that modulates gene activities and cell fate. Single-cell DNA methylomic studies offer unprecedented resolution for detecting and profiling cell subsets based on methylomic features. However, existing single-cell methylomic technologies are based on use of tubes or well plates and these platforms are not easily scalable for handling a large number of single cells.

View Article and Find Full Text PDF

There is concern for important adverse effects with use of second-generation antipsychotics in Parkinson's disease psychosis (PDP) and dementia-related psychosis. Pimavanserin is the only antipsychotic drug authorized for PDP and represents an inverse agonist of 5-HT receptors (5-HT2AR) lacking affinity for dopamine receptors. Therefore, the development of serotonin 5-HT2AR inverse agonists without dopaminergic activity represents a challenge for different neuropsychiatric disorders.

View Article and Find Full Text PDF

Genome-wide DNA methylation profile, or DNA methylome, is a critical component of the overall epigenomic landscape that modulates gene activities and cell fate. Single-cell DNA methylomic studies offer unprecedented resolution for detecting and profiling cell subsets based on methylomic features. However, existing single-cell methylomic technologies are all based on use of tubes or well plates and these platforms are not easily scalable for handling a large number of single cells.

View Article and Find Full Text PDF

Background: Impairment of specific cognitive domains in schizophrenia has been associated with prefrontal cortex (PFC) catecholaminergic deficits. Among other factors, prenatal exposure to infections represents an environmental risk factor for schizophrenia development in adulthood. However, it remains largely unknown whether the prenatal infection-induced changes in the brain may be associated with concrete switches in a particular neurochemical circuit, and therefore, if they could alter behavioral functions.

View Article and Find Full Text PDF

The study of psychiatric and neurological diseases requires the substrate in which the disorders occur, that is, the nervous tissue. Currently, several types of human bio-specimens are being used for research, including postmortem brains, cerebrospinal fluid, induced pluripotent stem (iPS) cells, and induced neuronal (iN) cells. However, these samples are far from providing a useful predictive, diagnostic, or prognostic biomarker.

View Article and Find Full Text PDF

Cognitive impairment represents one of the core features of schizophrenia. Prolyl Oligopeptidase (POP) inhibition is an emerging strategy for compensating cognitive deficits in hypoglutamatergic states such as schizophrenia, although little is known about how POP inhibitors exert their pharmacological activity. The mitochondrial and nuclear protein Prohibitin 2 (PHB2) could be dysregulated in schizophrenia.

View Article and Find Full Text PDF
Article Synopsis
  • Schizophrenia (SCZ) is influenced by genetic and environmental factors that may disrupt the regulation of gene expression, with the CPEB4 protein identified as a key player in both SCZ and autism spectrum disorder (ASD).
  • Research revealed that SCZ individuals showed reduced usage of a specific microexon in CPEB4, which correlated with lower levels of targeted genes associated with SCZ, particularly in those not taking antipsychotics.
  • Experimental findings in mice with altered CPEB4 expression support the link between aberrant splicing of CPEB4 and disrupted gene expression related to SCZ, suggesting a potential mechanism for the disorder.
View Article and Find Full Text PDF

In patients affected by Parkinson's disease (PD), up to 50% of them experience cognitive changes, and psychiatric disturbances, such as anxiety and depression, often precede the onset of motor symptoms and have a negative impact on their quality of life. Pathologically, PD is characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc) and the presence of intracellular inclusions, called Lewy bodies and Lewy neurites, composed mostly of α-synuclein (α-Syn). Much of PD research has focused on the role of α-Syn aggregates in the degeneration of SNc DA neurons due to the impact of striatal DA deficits on classical motor phenotypes.

View Article and Find Full Text PDF

Background: Many psychoactive compounds have been developed to have more beneficial clinical efficacy than conventional drugs by adding agonistic action at 5-HT receptors. The aim of the present study was to evaluate several psychotropic drugs that had been reported to behave as an agonist at 5-HT receptor (aripiprazole, brexpiprazole, asenapine, lurasidone, and vortioxetine) in both rat and postmortem human brain membranes.

Methods: The [S]GTPγS binding assay for G proteins coupled with 5-HT receptors was performed in rat brain membranes and postmortem human brain membranes.

View Article and Find Full Text PDF

Cannabis use disorder is frequent in schizophrenia patients, and it is associated with an earlier age of onset and poor schizophrenia prognosis. Serotonin 2A receptors (5-HT2AR) have been involved in psychosis and, like Akt kinase, are known to be modulated by THC. Likewise, endocannabinoid system dysregulation has been suggested in schizophrenia.

View Article and Find Full Text PDF

Prenatal environmental insults increase the risk of neurodevelopmental psychiatric conditions in the offspring. Structural modifications of dendritic spines are central to brain development and plasticity. Using maternal immune activation (MIA) as a rodent model of prenatal environmental insult, previous results have reported dendritic structural deficits in the frontal cortex.

View Article and Find Full Text PDF

Peripheral inputs continuously shape brain function and can influence memory acquisition, but the underlying mechanisms have not been fully understood. Cannabinoid type-1 receptor (CB1R) is a well-recognized player in memory performance, and its systemic modulation significantly influences memory function. By assessing low arousal/non-emotional recognition memory in mice, we found a relevant role of peripheral CB1R in memory persistence.

View Article and Find Full Text PDF

The psychedelic 5-HT receptor (5HT2AR) agonist psilocybin (or the active metabolite psilocin) has emerged as potential useful drug for various neuropsychiatric diseases, with a rapid onset of therapeutic activity. However, the mechanisms responsible for such effects remain incompletely characterized. We aimed to study in vitro pharmacological profile and in vivo acute mechanism of psilocin/psilocybin.

View Article and Find Full Text PDF