Publications by authors named "Mean R"

Background: Complement factor H-related protein 5 (CFHR5) nephropathy is an inherited renal disease characterized by microscopic and synpharyngitic macroscopic haematuria, C3 glomerulonephritis and renal failure. It is caused by an internal duplication of exons 2-3 within the CFHR5 gene resulting in dysregulation of the alternative complement pathway. The clinical characteristics and outcomes of transplanted patients with this rare familial nephropathy remain unknown.

View Article and Find Full Text PDF

Catheter-based measurements are extensively used nowadays in animal models to quantify global left ventricular (LV) cardiac function and hemodynamics. Conductance catheter measurements yield estimates of LV volumes. Such estimates, however, are confounded by the catheter's nonhomogeneous emission field and the contribution to the total conductance of surrounding tissue or blood conductance values (other than LV blood), a term often known as parallel conductance.

View Article and Find Full Text PDF

This study examines (a) the temporal stability of hemodynamic indices of systolic and diastolic function in C57BL/6 mice under 1.5% isoflurane (ISO) (v/v) anesthesia conditions in 50:50 O(2)/N(2)O (v/v) within 90 min post-induction, and (b) the effects of Mn(2+) on the mouse hemodynamic response in male C57BL/6 mice (n = 16). Left ventricular catheterizations allowed estimation of the hemodynamic indices.

View Article and Find Full Text PDF

Isoflurane (ISO) is the most commonly used inhalational anesthetic for experimental interventions in mice and is preferred for imaging technologies that require the mouse to remain anesthetized for relatively long time periods. This study compares the stability of mean arterial pressure (MAP), heart rate (HR), and body temperature under ISO concentrations of 1%, 1.5%, and 2% (volume-to-volume, v/v) for up to 90 minutes postinduction.

View Article and Find Full Text PDF

This study examines the effects of changing oxygen fractional inspiration ratio (FiO(2)), and nitrous oxide (N(2)O) for the improvement of cardiovascular control of mean arterial blood pressure (MAP) and heart rate (HR) in C57BL/6 mice under isoflurane anesthesia (1.5%) for up to 90 minutes post-induction. Heart rate variability (HRV) indices are also quantified under these conditions.

View Article and Find Full Text PDF

During mouse development, the ventral spinal cord becomes organized into five progenitor domains that express different combinations of transcription factors and generate different subsets of neurons and glia. One of these domains, known as the p2 domain, generates two subtypes of interneurons, V2a and V2b. Here we have used genetic fate mapping and loss-of-function analysis to show that the transcription factor Sox1 is expressed in, and is required for, a third type of p2-derived interneuron, which we named V2c.

View Article and Find Full Text PDF

During neural development the transition from neurogenesis to gliogenesis, known as the neuron-glial (Nu/G) fate switch, requires the coordinated function of patterning factors, pro-glial factors and Notch signalling. How this process is coordinated in the embryonic spinal cord is poorly understood. Here, we demonstrate that during the N/G fate switch in the ventral spinal cord (vSC) SOX1 links the function of neural patterning and Notch signalling.

View Article and Find Full Text PDF

The ATP-binding cassette (ABC) transporter 2 (ABCG2) is expressed by stem cells in many organs and in stem cells of solid tumors. These cells are isolated based on the side population (SP) phenotype, a Hoechst 3342 dye efflux property believed to be conferred by ABCG2. Because of the limitations of this approach we generated transgenic mice that express Nuclear GFP (GFPn) coupled to the Puromycin-resistance gene, under the control of ABCG2 promoter/enhancer sequences.

View Article and Find Full Text PDF

During ventral spinal cord (vSC) development, the p3 and pMN progenitor domain boundary is thought to be maintained by cross-repressive interactions between NKX2.2 and PAX6. Using loss-of-function analysis during the neuron-glial fate switch we show that the identity of the p3 domain is not maintained by the repressive function of NKX2.

View Article and Find Full Text PDF

Background: The MEFV gene is responsible for familial Mediterranean fever (FMF). Several disease associated mutations have been identified. The range of genetic variation in MEFV in Greek patients has not been determined.

View Article and Find Full Text PDF

Familial Mediterranean Fever (FMF) is an autosomal recessive disease of high prevalence within Mediterranean countries and particularly common in four ethnic populations: Arabs, non-Ashkenazi Jews, Armenians, and Turks. The responsible gene MEFV has been assigned to chromosome 16p13.3.

View Article and Find Full Text PDF

Autosomal dominant medullary cystic kidney disease (ADMCKD) is an adult-onset heterogeneous genetic nephropathy characterized by salt wasting and end-stage renal failure. The gene responsible for ADMCKD-1 was mapped on chromosome 1q21 and it is flanked proximally by marker D1S498 and distally by D1S2125, encompassing a region of approximately 8 cm. Within this region there are a large number of transcribed genes including NPR1 that encodes the atrial natriuretic peptide receptor 1.

View Article and Find Full Text PDF

The autosomal dominant form of polycystic kidney disease is a very frequent genetically heterogeneous inherited condition affecting approximately 1 : 1000 individuals of the Caucasian population. The main symptom is the formation of fluid-filled cysts in the kidneys, which grow progressively in size and number with age, and leading to end-stage renal failure in approximately 50% of patients by age 60. About 85% of cases are caused by mutations in the PKD1 gene on chromosome 16p13.

View Article and Find Full Text PDF

Mutations in the PKD1 gene account for approximately 85% of cases with autosomal dominant polycystic kidney disease (ADPKD1; MIM# 601313), which is considered one of the most frequent monogenic disorders, with a frequency of approximately 1:1000. The main symptom is the formation of fluid-filled cysts in the kidneys and less often in other organs, such as the liver and pancreas. Since the cloning of the gene many mutations have been identified, although the screening is hampered by several unique features of this gene, the most significant one being that approximately 70% of the sequence at the 5'-end, is reiterated elsewhere on chromosome 16 with homology approaching 95%.

View Article and Find Full Text PDF

Polycystic kidney disease (ADPKD) is a condition with an autosomal dominant mode of inheritance and adult onset. Two forms of the disease, ADPKD1 and ADPKD2, caused by mutations in PKD1 and PKD2, respectively, are very similar, except that ADPKD1 patients run a more severe course. At the cellular level, ADPKD1 was first shown to be recessive, since somatic second hits are perhaps necessary for cyst formation.

View Article and Find Full Text PDF