Introduction: Chronic fetal hypoxia is commonly associated with fetal growth restriction and can predispose to respiratory disease at birth and in later life. Antenatal antioxidant treatment has been investigated to overcome the effects of oxidative stress to improve respiratory outcomes. We aimed to determine if the effects of chronic fetal hypoxia and antenatal antioxidant administration persist in the lung in early adulthood.
View Article and Find Full Text PDFThe mechanisms linking maternal asthma (MA) exposure in utero and subsequent risk of asthma in childhood are not fully understood. Pathological airway remodelling, including reticular basement membrane thickening, has been reported in infants and children who go on to develop asthma later in childhood. This suggests altered airway development before birth as a mechanism underlying increased risk of asthma in children exposed in utero to MA.
View Article and Find Full Text PDFThe adult mammalian heart is unable to undergo cardiac repair, limiting potential treatment options after cardiac damage. However, the fetal heart is capable of cardiac repair. In preparation for birth, cardiomyocytes (CMs) undergo major maturational changes that include exit from the cell cycle, hypertrophic growth, and mitochondrial maturation.
View Article and Find Full Text PDFMaternal asthma is associated with increased rates of neonatal lung disease, and fetuses from asthmatic ewes have fewer surfactant-producing cells and lower surfactant-protein B gene (SFTPB) expression than controls. Antenatal betamethasone increases lung surfactant production in preterm babies, and we therefore tested this therapy in experimental maternal asthma. Ewes were sensitised to house dust mite allergen, and an asthmatic phenotype induced by fortnightly allergen lung challenges; controls received saline.
View Article and Find Full Text PDFObesity (Silver Spring)
October 2024
Objective: Maternal obesity (MO) increases the risk of later-life liver disease in offspring, especially in males. This may be due to impaired cytochrome P450 (CYP) enzyme activity driven by an altered maternal-fetal hormonal milieu. MO increases fetal cortisol concentrations that may increase CYP activity; however, glucocorticoid receptor (GR)-mediated signaling can be modulated by alternative GR isoform expression.
View Article and Find Full Text PDFThe consumption of high fat-high energy diets (HF-HEDs) continues to rise worldwide and parallels the rise in maternal obesity (MO) that predisposes offspring to cardiometabolic disorders. Although the underlying mechanisms are unclear, thyroid hormones (TH) modulate cardiac maturation in utero. Therefore, we aimed to determine the impact of a high fat-high energy diet (HF-HED) on the hormonal, metabolic and contractility profile of the non-human primate (NHP) fetal heart.
View Article and Find Full Text PDFIncreasing placental perfusion (PP) could improve outcomes of growth-restricted fetuses. One way of increasing PP may be by using phosphodiesterase (PDE)-5 inhibitors, which induce vasodilatation of vascular beds. We used a combination of clinically relevant magnetic resonance imaging (MRI) techniques to characterize the impact that tadalafil infusion has on maternal, placental and fetal circulations.
View Article and Find Full Text PDFBackground: The quality of Patient and Public Involvement (PPI) in healthcare research varies considerably and is frequently tokenistic. We aimed to co-produce the Insight | Public Involvement Quality Recognition and Awards programme, based on the UK Standards for Public Involvement (UKSPI) alongside an incremental scale designed by Expert Citizens (a lived experience-led community group), to incentivise and celebrate continuous improvement in PPI.
Methods: We used Task and Finish Groups (19/44 [43%] public contributor membership) to co-produce the programme which we piloted in three organisations with different healthcare research models.
Introduction: Drug metabolism during pregnancy is a complex process that involves maternal, placental and fetal sites of metabolism. Indeed, there is a lack of clarity provided from drug metabolism in human pregnancy due to ethical limitations. Large animal models of human pregnancy provide an opportunity to quantify activity of phase 1 drug metabolism mediated by cytochrome P450 (CYP) enzymes in the maternal, placental, and fetal compartments.
View Article and Find Full Text PDFHospital discharge for people experiencing homelessness is a perennial challenge. The Homeless Reduction Act 2017 (HRA) places new responsibilities on hospitals, but it remains unknown whether this has affected discharge practices. This qualitative study explores stakeholders' views on the challenges around hospital discharge for people experiencing homelessness, in the context of a deprived English city.
View Article and Find Full Text PDFBackground: Maternal undernutrition during pregnancy disrupts both fetal growth and development with perturbations to certain physiological processes within the maternal-fetal-placental unit, including metabolic function. However, it is unknown if hypoglycemia during pregnancy alters maternal-fetal-placental drug metabolism as mediated by cytochrome P450 (CYP) enzymes. Despite this, hypoglycemia reduces CYP enzyme activity in non-pregnant animals.
View Article and Find Full Text PDFIntroduction: The mechanisms that contribute to continued male intrauterine growth in response to an adverse maternal environment, such as those brought on by maternal asthma, remain largely undefined but may, in part, be mediated by androgen-mediated signalling. We previously reported the expression of multiple AR protein isoforms in the human placenta and proposed the novel AR-45 isoform to be integral in mediating male-specific androgen-dependent signalling in the presence of maternal asthma. In the current study we have used an ex vivo approach to further understand sex-specific differences in placental androgen signalling in the presence and absence of inflammation using human term villous placental explants.
View Article and Find Full Text PDFIntroduction: Non-alcoholic fatty liver disease (NAFLD) is characterised by accumulation of triglycerides and cholesterol within the liver and dysregulation of specific hepatic cytochrome P450 (CYPs) activity. CYPs are involved in the metabolism of endogenous and exogenous chemicals. Hepatic CYP activity is dysregulated in human studies and animal models of a Western diet (WD) or low birth weight (LBW) independently, but the additive effects of LBW and postnatal WD consumption are unknown.
View Article and Find Full Text PDFPurpose: Ten percent of pregnancies are affected by intrauterine growth restriction (IUGR), and evidence suggests that affected neonates have reduced activity of hepatic cytochrome P450 (CYP) drug metabolising enzymes. Given that almost all pregnant individuals take medications and additional medications are often required during an IUGR pregnancy, we aimed to determine the impact of IUGR on hepatic CYP activity in sheep fetuses and pregnant ewes.
Methods: Specific probes were used to determine the impact of IUGR on the activity of several CYP isoenzymes (CYP1A2, CYP2C19, CYP2D6 and CYP3A) in sheep fetuses and pregnant ewes.
It is well understood that sex differences exist between females and males even before they are born. These sex-dependent differences may contribute to altered growth and developmental outcomes for the fetus. Based on our initial observations in the human placenta, we hypothesised that the male prioritises growth pathways in order to maximise growth through to adulthood, thereby ensuring the greatest chance of reproductive success.
View Article and Find Full Text PDFIntroduction: The human placenta expresses multiple glucocorticoid receptor (GR) isoforms that may be partially regulated by the untranslated 5' exon 1 GR gene promoter region which consists of 9 different promoters and 13 splice variants. The objective of this study was to determine which GR exon 1 variants are expressed in the human placenta and relate these findings to GR mRNA and protein expression.
Methods: Placental extracts from pregnancies with or without the complication of maternal asthma and trophoblast cells exposed to an inflammatory challenge in vitro were examined using PCR and Western blot to measure GR exon 1 variants, GR splice variant mRNA and GR protein isoforms, respectively.
Maternal asthma is known to impact intrauterine growth outcomes, which may be mediated, in part, by altered androgen signalling. Our aim was to explore whether the sheep placenta expresses androgen receptor (AR) isoforms and determine if the differential expression of AR protein isoforms is altered by maternal asthma. Four known AR isoforms were detected (AR-FL, AR-v1, AR-v7, and AR-45), and their expression and subcellular distribution was altered in the presence of maternal allergic asthma.
View Article and Find Full Text PDFMaternal alcohol consumption during pregnancy results in elevated vulnerability to intrauterine growth restriction, preterm birth, miscarriage, and stillbirth. Many of the detrimental effects of fetal alcohol exposure may be mediated through placental dysfunction; however, the exact mechanisms remain unknown. Here, we aimed to determine the effect of maternal alcohol exposure prior to and during early pregnancy on placental glucocorticoid receptor (GR) isoforms, associated GR regulated genes, and infant outcomes.
View Article and Find Full Text PDFExpert Rev Respir Med
December 2020
Introduction: Asthma is a highly prevalent co-morbidity during pregnancy that can worsen as gestation progresses and is associated with several adverse perinatal outcomes. These adverse outcomes often result from uncontrolled asthma during pregnancy and acute asthma exacerbations that are associated with alterations in placental function and fetal growth.
Areas Covered: This paper will discuss how maternal asthma in pregnancy affects fetal growth and development which may alter future offspring health.