Publications by authors named "Meaghan Ransom"

Determining how alveoli are formed and maintained is critical to understanding lung organogenesis and regeneration after injury. To study the cellular dynamics of this critical stage of lung development, we have used scanned oblique-plane illumination microscopy of living lung slices to observe alveologenesis in real time at high resolution over several days. Contrary to the prevailing notion that alveologenesis occurs by airspace subdivision via ingrowing septa, we find that alveoli form by ballooning epithelial outgrowth supported by contracting mesenchymal ring structures.

View Article and Find Full Text PDF

Extracellular vesicle (EV) biology in neonatal lung development and disease is a rapidly growing area of investigation. Although EV research in the neonatal population lags behind EV research in adult lung diseases, recent discoveries demonstrate promise in furthering our understanding of the pathophysiology of bronchopulmonary dysplasia and the potential use of EVs in the clinical setting, as both biomarkers and therapeutic agents. This review article explores some of the recent advances in this field and our evolving knowledge of the role of EVs in bronchopulmonary dysplasia.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are secreted lipid-enclosed particles that have emerged as potential biomarkers and therapeutic agents in lung disease, including bronchopulmonary dysplasia (BPD), a leading complication of preterm birth. Many unanswered questions remain about the content and cargo of EVs in premature infants and their role in lung development. To characterize EVs during human lung development, tracheal aspirates were collected from premature neonates between 22 and 35 wk gestational age and analyzed via nanoparticle tracking analysis, electron microscopy, and bead-based flow cytometry.

View Article and Find Full Text PDF
Article Synopsis
  • * The focus of this review is on uncommon but serious laryngotracheal anomalies that may require quick assessment and surgery.
  • * It covers the causes of these conditions, how they present clinically, the diagnostic process, and the treatment options available during and after NICU care.
View Article and Find Full Text PDF

Background: The pathogenesis of bronchopulmonary dysplasia (BPD) is multifactorial, and there are limited data about prenatal exposures and risk of BPD.

Study Design: Our study performed parallel analyses using a logistic regression model in a cohort of 4527 infants with data from a curated registry and using a phenome wide association study (PheWAS) based on ICD9/10-based phecodes. We examined 20 prenatal exposures from a neonatal intensive care unit (NICU) curated registry database related to pregnancy and maternal health as well as 94 maternal diagnosis phecodes with a PheWAS analysis.

View Article and Find Full Text PDF

Lung organogenesis requires precise timing and coordination to effect spatial organization and function of the parenchymal cells. To provide a systematic broad-based view of the mechanisms governing the dynamic alterations in parenchymal cells over crucial periods of development, we performed a single-cell RNA-sequencing time-series yielding 102,571 epithelial, endothelial and mesenchymal cells across nine time points from embryonic day 12 to postnatal day 14 in mice. Combining computational fate-likelihood prediction with RNA in situ hybridization and immunofluorescence, we explore lineage relationships during the saccular to alveolar stage transition.

View Article and Find Full Text PDF

Patients with severe anemia can present with non-specific symptoms, including shock and respiratory distress. Ensuring a rapid, targeted workup is initiated and providing prompt transfusions as necessary are critical for both diagnostic success and clinical improvement.

View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD) is a leading complication of preterm birth that affects infants born in the saccular stage of lung development at <32 weeks of gestation. Although the mechanisms driving BPD remain uncertain, exposure to hyperoxia is thought to contribute to disease pathogenesis. To determine the effects of hyperoxia on epithelial-mesenchymal interactions and to define the mediators of activated Wnt/β-catenin signaling after hyperoxia injury.

View Article and Find Full Text PDF