Intense wildfires burning >360000 acres in San Diego during October, 2007 provided a unique opportunity to study the impact of wildfires on local air quality and biomass burning aerosol (BBA) aging. The size-resolved mixing state of individual particles was measured in real-time with an aerosol time-of-flight mass spectrometer (ATOFMS) for 10 days after the fires commenced. Particle concentrations were high county-wide due to the wildfires; 84% of 120-400 nm particles by number were identified as BBA, with particles <400 nm contributing to mass concentrations dangerous to public health, up to 148 μg/m(3).
View Article and Find Full Text PDFAerosol particles, especially those ranging from 50 to 200 nm, strongly impact climate by serving as nuclei upon which water condenses and cloud droplets form. However, the small number of analytical methods capable of measuring the composition of particles in this size range, particularly at the individual particle level, has limited our knowledge of cloud condensation nuclei (CCN) composition and hence our understanding of aerosols effect on climate. To obtain more insight into particles in this size range, we developed a method which couples a growth tube (GT) to an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS), a combination that allows in situ measurements of the composition of individual particles as small as 38 nm.
View Article and Find Full Text PDFAtmospheric heterogeneous reactions can potentially change the hygroscopicity of atmospheric aerosols as they undergo chemical aging processes in the atmosphere. A particle's hygroscopicity influences its cloud condensation nuclei (CCN) properties with potential impacts on cloud formation and climate. In this study, size-selected calcite mineral particles were reacted with controlled amounts of nitric acid vapour over a wide range of relative humidities in an aerosol flow tube to study the conversion of insoluble and thus apparently non-hygroscopic calcium carbonate into soluble and hygroscopic calcium nitrate.
View Article and Find Full Text PDF