Organoids have been widely used for studying tissue growth and modeling diseases, but achieving physiologically relevant architecture, size, and function has remained a challenge. Here, we develop a next-generation organotypic culture method that enables the formation of a highly patterned, complex, branched tissue that is spatially organized to accurately recapitulate the morphology, scale, cellular, transcriptional, and tissue-level heterogeneity of human breast tissue. Hormone responsiveness of organoids is also a feature allowing for examination of androgen therapy or post-menopausal changes to breast tissue development and regeneration.
View Article and Find Full Text PDFMicrobes engage in numerous social behaviours that are critical for survival and reproduction, and that require individuals to act as a collective. Various mechanisms ensure that collectives are composed of related, cooperating cells, thus allowing for the evolution and stability of these traits, and for selection to favour traits beneficial to the collective. Since microbes are difficult to observe directly, sociality in natural populations can instead be investigated using evolutionary genetic signatures, as social loci can be evolutionary hotspots.
View Article and Find Full Text PDF