Dielectric constant is an important property which is widely utilized in many scientific fields and characterizes the degree of polarization of substances under the external electric field. In this work, a structure-property relationship of the dielectric constants (ε) for a diverse set of polymers was investigated. A transparent mechanistic model was developed with the application of a machine learning approach that combines genetic algorithm and multiple linear regression analysis, to obtain a mechanistically explainable and transparent model.
View Article and Find Full Text PDFPredicting the activities and properties of materials via in silico methods has been shown to be a cost- and time-effective way of aiding chemists in synthesizing materials with desired properties. Refractive index (n) is one of the most important defining characteristics of an optical material. Presented in this work is a quantitative structure-property relationship (QSPR) model that was developed to predict the refractive index for a diverse set of polymers.
View Article and Find Full Text PDF