The physicochemical properties of polymeric hydrogels render them attractive for the development of 3D printed prototypes for tissue engineering in regenerative medicine. Significant effort has been made to design hydrogels with desirable attributes that facilitate 3D printability. In addition, there is significant interest in exploring stimuli-responsive hydrogels to support automated 3D printing into more structurally organised prototypes such as customizable bio-scaffolds for regenerative medicine applications.
View Article and Find Full Text PDFThis research aimed to substantiate the potential practicality of utilizing a matrix-like platform, a novel 3D-printed biomaterial scaffold, to enhance and guide host cells' growth for bone tissue regeneration. The 3D biomaterial scaffold was successfully printed using a 3D Bioplotter (EnvisionTEC, GmBH) and characterized. Osteoblast-like MG63 cells were utilized to culture the novel printed scaffold over a period of 1, 3, and 7 days.
View Article and Find Full Text PDFBackground: Oral administration of statins for the treatment of familial hypercholesterolemia results in poor therapeutic outcomes and patient compliance. An alternative administration route is proposed to circumvent the current limitations. This research is aimed at developing nano-emulsions and nano-emulgels as the ultimate potential delivery systems of statins for administration the transdermal route.
View Article and Find Full Text PDFThere is a demand for progressive approaches in bone tissue engineering to repair and regenerate bone defects resulting from trauma or disease. This investigation sought to engineer a single-step in situ conjugated polymeric scaffold employing 3D printing technology as an innovative fabricating tool. A polymeric scaffold was engineered in situ employing sodium alginate as a bio-ink which interacted with a poly(ethyleneimine) solution on bioprinting to form a polyelectrolyte complex through ionic bond formation.
View Article and Find Full Text PDFSemi-synthetic biopolymer complex (SSBC) nanoparticles were investigated as a potential oral drug delivery system to enhance the bioavailability of a poorly water-soluble model drug acyclovir (ACV). The SSBCs were prepared from cross-linking of hydroxyl groups on hyaluronic acid (HA) with poly(acrylic acid) (PAA) resulting in ether linkages. Thereafter, conjugation of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) onto HA-PAA was accomplished using a 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS)-promoted coupling reaction.
View Article and Find Full Text PDFSemi-synthetic biopolymer complexes (SSBCs) have potential as nano-carriers for oral drug delivery due to their exceptional properties obtained by merging the properties of synthetic (e.g. good thermal and mechanical properties) with natural polymers (e.
View Article and Find Full Text PDF