The bacterial flagellar motor (BFM) is a rotary nanomachine powered by the translocation of ions across the inner membrane through the stator complex. The stator complex consists of two membrane proteins: MotA and MotB (in H-powered motors), or PomA and PomB (in Na-powered motors). In this study, we used ancestral sequence reconstruction (ASR) to probe which residues of MotA correlate with function and may have been conserved to preserve motor function.
View Article and Find Full Text PDFThe continued spread of drug-resistant tuberculosis is one of the most pressing and complex challenges facing tuberculosis management worldwide. Therefore, developing a new class of drugs is necessary and urgently needed to cope with the increasing threat of drug-resistant tuberculosis. This study aims to discover a potential new class of tuberculosis drug candidates different from existing tuberculosis drugs.
View Article and Find Full Text PDFinfection (CDI) is a significant cause of hospital-acquired and antibiotic-mediated intestinal diseases and is a growing global public health concern. Overuse of antibiotics and their effect on normal intestinal flora has increased the incidence and severity of infections. Thus, the development of new, effective, and safe treatment options is a high priority.
View Article and Find Full Text PDFThe emergence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis creates the urgency for new anti-tuberculosis drugs to improve the efficiency of current tuberculosis treatment. In the search for a new potential tuberculosis drug, we synthesized an isoindole based chemical library and screened a potential candidate with significant anti-tuberculosis activity. The compound named 2-hydroxy-4-(4-nitro-1,3-dioxoisoindolin-2-yl) benzoic acid (IDD-B40) showed strong activity against all the tested drug-susceptible and drug-resistant strains of M.
View Article and Find Full Text PDFThe bacterial flagellar motor (BFM) is a nanomachine that rotates the flagellum to propel many known bacteria. The BFM is powered by ion transit across the cell membrane through the stator complex, a membrane protein. Different bacteria use various ions to run their BFM, but the majority of BFMs are powered by either proton (H) or sodium (Na) ions.
View Article and Find Full Text PDFTuberculosis is the leading cause of mortality among infectious diseases worldwide. Finding a new competent anti tubercular therapy is essential. We screened thousands of compounds and evaluated their efficacy against .
View Article and Find Full Text PDFOverproduction and accumulation of melanin in the skin will darken the skin and cause skin disorders. So far, components that can inhibit tyrosinase, a melanin synthase of melanocytes, have been developed and used as ingredients of cosmetics or pharmaceutical products. However, most of existing substances can only inhibit the biosynthesis of melanin while melanin that is already synthesized and deposited is not directly decomposed.
View Article and Find Full Text PDFHemoperfusion (HP) is one of the important treatment modalities in extracorporeal therapy for patients with acute intoxication. Its use has declined during the past 20 years despite its efficacy, because of its side effects, especially an increased risk of bleeding. Mechanisms of hemostasis impairment have not been clearly elucidated and studies demonstrating the mechanism are lacking.
View Article and Find Full Text PDFThe medium cut-off (MCO) dialyzer has shown good clearance of large middle molecules, but its long-term effects are unclear. We investigated whether MCO hemodialysis (HD) over one year could reduce middle molecule levels and cell-free hemoglobin (CFH), without albumin loss. A prospective cohort study in 57 hemodialysis patients was conducted.
View Article and Find Full Text PDFInt J Antimicrob Agents
July 2019
Due to the emergence of multidrug-resistant and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis, new antituberculosis drugs are urgently required to improve the efficacy of current tuberculosis (TB) treatment. To achieve this goal, ca. 1000 chemical compounds were screened for potential antimycobacterial activity, among which methyl 5-(2-diethylaminoethoxy)-7,12-dioxo-7,12 dihydrodinaphtho[1,2-b;2',3'-d]furan-6-carboxylate (DNF-3) showed strong activity against all of the tested drug-susceptible and -resistant M.
View Article and Find Full Text PDFBackground: Tuberculosis is a very serious infectious disease that threatens humanity, and the emergence of multidrug-resistant (MDR), extensively drug-resistant (XDR) strains resistant to drugs suggests that new drug development is urgent. In order to develop new tuberculosis drug, we have conducted in vitro anti-tubercular tests on thousands of plant-derived substances and finally found collinin extracted from the leaves of Zanthoxylum schinifolium, which has an excellent anti-tuberculosis effect.
Purpose: To isolate an anti-tubercular bioactive compound from the leaves of Z.
DFC-2, a methyl 5-[2-(dimethylamino)ethoxy]-7,12-dioxo-7,12-dihydrodinaphtho[1,2-b:2',3'-d]furan-6-carboxylate, is reported to have antitubercular effects against . At concentrations ranging from 0.19 to 0.
View Article and Find Full Text PDFResponsible for nearly 1.5 million deaths every year, the infectious disease tuberculosis remains one of the most serious challenges to global health. The emergence of multidrug-resistant tuberculosis and, more recently, extensively drug-resistant tuberculosis poses a significant threat in our effort to control this epidemic.
View Article and Find Full Text PDFThis study explores the antitubercular activity of α-viniferin, a bioactive phytochemical compound obtained from Carex humilis. α-Viniferin was active against both drug-susceptible and -resistant strains of Mycobacterium tuberculosis at MICs of 4.6 μM in culture broth medium and MICs of 2.
View Article and Find Full Text PDFBackground: Human tuberculosis, which is caused by the pathogen Mycobacterium tuberculosis, remains a major public health concern. Increasing drug resistance poses a threat of disease resurgence and continues to cause considerable mortality worldwide, which necessitates the development of new drugs with improved efficacy. Thymoquinone (TQ), an essential compound of Nigella sativa, was previously reported as an active anti-tuberculosis agent.
View Article and Find Full Text PDF