This comprehensive review investigates a variety of creative approaches in the field of sustainable food packaging biomaterials in response to growing environmental concerns and the negative effects of traditional plastic packaging. The study carefully looks at new developments in biomaterials, such as biodegradable polymers, ceramics, composites, and metal alloys, in response to the growing need for environmentally suitable substitutes. It highlights how they might replace conventional plastic packaging and lessen environmental damage.
View Article and Find Full Text PDFThis research paper presents a comprehensive analysis of epoxy composites fortified with natural fibers such as jute, banana, and coconut, further augmented by the incorporation of Rubik's layer, aimed at evaluating their mechanical performance in terms of tensile, bending, and impact properties. As sustainable alternatives to traditional reinforcement materials, these natural fibers offer the advantage of low environmental impact, renewability, and biodegradability. The Rubik's layer, known for its three-dimensional interlocking structure, holds promise in enhancing composite properties due to its unique geometry and material characteristics.
View Article and Find Full Text PDF