Publications by authors named "Md Zahid Akhter"

Article Synopsis
  • The interaction between endothelial cells (ECs) and the matrix is crucial for controlling nuclear tension, which helps prevent gene synthesis errors and the transition to a "leaky" state associated with acute lung injury (ALI).
  • Focal adhesion kinase (FAK) plays a key role in this process by maintaining the transmission of tension to the nucleus, ensuring that ECs remain in a restrictive state.
  • When FAK is depleted, activation of the RhoA-Rho-kinase pathway leads to increased tension and phosphorylation of nuclear proteins, resulting in the downregulation of important genes like KLF2, contributing to the leaky EC state; restoring FAK can reverse this process and maintain lung health.
View Article and Find Full Text PDF

Unlabelled: Neutrophils (PMNs) reside as a marginated pool within the vasculature, ready for deployment during infection. However, how endothelial cells (ECs) control PMN extravasation and activation to strengthen tissue homeostasis remains ill-defined. Here, we found that the vascular ETS-related gene (ERG) is a generalized mechanism regulating PMN activity in preclinical tissue injury models and human patients.

View Article and Find Full Text PDF

Increased lung vascular permeability and neutrophilic inflammation are hallmarks of acute lung injury. Alveolar macrophages (AMϕ), the predominant sentinel cell type in the airspace, die in massive numbers while fending off pathogens. Recent studies indicate that the AMϕ pool is replenished by airspace-recruited monocytes, but the mechanisms instructing the conversion of recruited monocytes into reparative AMϕ remain elusive.

View Article and Find Full Text PDF

We have recently uncovered that endothelial cell (EC) S1PR1 controls the effectiveness of VEGFR2 driven tumor angiogenesis. By using tumor ECs, EC-S1PR1 mice and S1PR1 antagonist, we showed that VEGF-VEGFR2 pathway requires EC-S1PR1-induced signaling to efficiently drive tumor vascularization and growth, indicating combining S1PR1 antagonist with anti-VEGF/VEGFR2 therapy may eradicate resistant tumors.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a lethal inflammatory lung disorder whose incidence is on the rise. Alveolar macrophages normally act to resolve inflammation, but when dysregulated they can provoke ALI. We demonstrate that monocyte-derived macrophages (CD11b macrophages) recruited into the airspace upregulate the anti-inflammatory function of alveolar macrophages by suppressing their stimulator of type 1 interferon gene (STING) signaling.

View Article and Find Full Text PDF

The vascular endothelial growth factor-A (VEGF-A)-VEGFR2 pathway drives tumor vascularization by activating proangiogenic signaling in endothelial cells (ECs). Here, we show that EC-sphingosine-1-phosphate receptor 1 (S1PR1) amplifies VEGFR2-mediated angiogenic signaling to enhance tumor growth. We show that cancer cells induce S1PR1 activity in ECs, and thereby, conditional deletion of S1PR1 in ECs (EC-S1pr1 mice) impairs tumor vascularization and growth.

View Article and Find Full Text PDF

Epithelial ovarian carcinoma (EOC) patients often acquire resistance against common chemotherapeutic drugs like paclitaxel and cisplatin. The mechanism responsible for the same is ambiguous. We have identified a putative drug-resistant tumour cell phenotype (EpCAMCD45) in the ascitic fluid of EOC patients, which appears to originate from the primary tumour.

View Article and Find Full Text PDF

High-mobility group A1 (HMGA1) is a non-histone chromosomal protein, which is known as 'architectural' transcription factor that facilitates the assembly of 'enhanceosome.' Because of its elevated expression in a number of human malignancies, with barely minimal levels in healthy adults, HMGA1 is considered as potential 'tumor marker.' Therefore, we looked at the inhibition of hmga1 using anti-gene strategy, as an attractive therapeutic approach.

View Article and Find Full Text PDF

High mobility group A1 (HMGA1), a non-histone chromosomal protein, is highly expressed in a wide range of human cancers including cervical, breast, and prostate cancers. Therefore, hmga1 gene is considered as an attractive potential target for anticancer drugs. We have chosen 27 bp DNA sequence from a regulatory region of hmga1 promoter and studied its interaction with adriamycin (ADM) and in vitro expression of HMGA1 in the presence of ADM in HeLa cell line.

View Article and Find Full Text PDF

High mobility group A1 (HMGA1) non-histone chromatin protein is known as an architectural transcription factor that regulates transcription of various genes. HMGA1 is highly expressed in almost all human cancers and considered as a potent tumor marker. Because of its association with cancers, hmga1 is considered as a critical target for anti-cancer drugs.

View Article and Find Full Text PDF