Maternal nutrition is crucial for the offspring's skeleton development and the onset of osteoporosis later in life. While maternal low protein diet has been shown to regulate bone mass negatively, the effect of a high protein diet (HP) remains unexplored. Here, we found that C57BL/6 mice fed with HP delivered offspring with decreased skeletal mineralization at birth and reduced bone mass throughout their life due to a decline in their osteoblast maturation.
View Article and Find Full Text PDFDiabetes is associated with an increase in skeletal fragility and risk of fracture. However, the underlying mechanism for the same is not well understood. Specifically, the results from osteoblast cell culture studies are ambiguous due to contradicting reports.
View Article and Find Full Text PDFBone loss is a non-motor symptom of Parkinson's disease (PD). It is unclear whether a patient's immobility or the endocrine changes in the body causes bone deterioration. To address this issue, we used an animal model of the disease where Swiss albino mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on day 1 and were left untreated for eight weeks.
View Article and Find Full Text PDF