Lentil Medik.) is a cool season legume crop that plays vital roles in food and nutritional security, mostly in the least developed countries. Lentil is often cultivated in dry and semi-dry regions, where the primary abiotic factor is drought, which negatively impacts lentil growth and development, resulting in a reduction of yield.
View Article and Find Full Text PDFIn this study, canola ( L.) seedlings were treated with individual and combined salinity and lithium (Li) stress, with and without acetic acid (AA) or nitric acid (NO), to investigate their possible roles against these stresses. Salinity intensified Li-induced damage, and the principal component analysis revealed that this was primarily driven by increased oxidative stress, deregulation of sodium and potassium accumulation, and an imbalance in tissue water content.
View Article and Find Full Text PDFNitric oxide (NO) has received much attention since it can boost plant defense mechanisms, and plenty of studies have shown that exogenous NO improves salinity tolerance in plants. However, because of the wide range of experimental settings, it is difficult to assess the administration of optimal dosages, frequency, timing, and method of application and the overall favorable effects of NO on growth and yield improvements. Therefore, we conducted a meta-analysis to reveal the exact physiological and biochemical mechanisms and to understand the influence of plant-related or method-related factors on NO-mediated salt tolerance.
View Article and Find Full Text PDFPlants are frequently exposed to one or more abiotic stresses, including combined salinity-drought, which significantly lowers plant growth. Many studies have been conducted to evaluate the responses of plants to combined salinity and drought stress. However, a meta-analysis-based systematic review has not been conducted yet.
View Article and Find Full Text PDFBackground: To our knowledge, the role of exogenous fluoride (F) on aluminum (Al)-stress mitigation in plants has not been investigated yet. In this experiment, barley (Hordeum vulgaris) seedlings were exposed to excessive Al concentrations (aluminum chloride, 0.5, 1.
View Article and Find Full Text PDFBackground: Plant triterpenoids are major sources of nutraceuticals that provide many health benefits to humans. Lupeol is one of the pentacyclic dietary triterpenoids commonly found in many fruits and vegetables, which is highly investigated for its pharmacological effect and benefit to human health.
Purpose: This systematic review critically discussed the potential pharmacological benefits of lupeol and its derivatives as evidenced by various cellular and animal model studies.
Heavy metal toxicity is one of the most devastating abiotic stresses. Heavy metals cause serious damage to plant growth and productivity, which is a major problem for sustainable agriculture. It adversely affects plant molecular physiology and biochemistry by generating osmotic stress, ionic imbalance, oxidative stress, membrane disorganization, cellular toxicity, and metabolic homeostasis.
View Article and Find Full Text PDFSeveral recent studies have shown that citric acid/citrate (CA) can confer abiotic stress tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants under various abiotic stress conditions. Improved physiological outcomes are associated with higher photosynthetic rates, reduced reactive oxygen species, and better osmoregulation.
View Article and Find Full Text PDFCytosolic calcium ([Ca2+]cyt) elevation activates plasma membrane anion channels in guard cells, which is required for stomatal closure. However, involvement of the anion channels in the [Ca2+]cyt elevation remains unclear. We investigated the involvement using Arabidopsis thaliana anion channel mutants, slac1-4 slah3-3 and slac1-4 almt12-1.
View Article and Find Full Text PDFMounting evidence support the potential benefits of functional foods or nutraceuticals for human health and diseases. Black cumin ( L.), a highly valued nutraceutical herb with a wide array of health benefits, has attracted growing interest from health-conscious individuals, the scientific community, and pharmaceutical industries.
View Article and Find Full Text PDF5-aminolevulinic acid (ALA) modulates various defense systems in plants and confers abiotic stress tolerance. Enhancement of crop production is a challenge due to numerous abiotic stresses such as, salinity, drought, temperature, heavy metals, and UV. Plants often face one or more abiotic stresses in their life cycle because of the challenging growing environment which results in reduction of growth and yield.
View Article and Find Full Text PDFSalinization is a worldwide environmental problem, which is negatively impacting crop yield and thus posing a threat to the world's food security. Considering the rising threat of salinity, it is need of time, to understand the salt tolerant mechanism in plants and find avenues for the development of salinity resistant plants. Several plants tolerate salinity in a different manner, thereby halophytes and glycophytes evolved altered mechanisms to counter the stress.
View Article and Find Full Text PDFRegulatory roles of hydrogen sulfide (HS) under saline-alkaline and/or aniline stress have not been studied yet. In this study, we investigated the insights into saline-alkaline and/or aniline stresses-induced toxicity in artichoke plants and its alleviation by HS priming. Individual saline-alkaline or aniline stress and their combination reduced plant growth and photosynthetic pigments.
View Article and Find Full Text PDFAllantoin ((AT) a purine metabolite)-mediated ultraviolet C (UVC) stress mitigation has not been studied to date. Here, we reported the physicochemical mechanisms of UVC-induced stress in tomato ( L.) plants, including an AT-directed mitigation strategy.
View Article and Find Full Text PDFSoil salinity often hinders plant productivity in both natural and agricultural settings. Arbuscular mycorrhizal fungal (AMF) symbionts can mediate plant stress responses by enhancing salinity tolerance, but less attention has been devoted to measuring these effects across plant-AMF studies. We performed a meta-analysis of published studies to determine how AMF symbionts influence plant responses under non-stressed vs.
View Article and Find Full Text PDFAllyl isothiocyanate (AITC) induces stomatal closure accompanied by reactive oxygen species (ROS) production and glutathione (GSH) depletion in Arabidopsis thaliana. In this study, stomatal responses to three other isothiocyanates (ITCs), benzyl isothiocyanate (BITC), sulforaphane (SFN), and phenethyl isothiocyanate (PEITC), were investigated in A. thaliana.
View Article and Find Full Text PDFThere are 11 different varieties of L. that are used in the food industry, including sugar beets, beetroots, Swiss chard, and fodder beets. The typical red coloration of their tissues is caused by the indole-derived glycosides known as betalains that were analyzed in hypocotyl extracts by UV/Vis spectrophotometry to determine the content of betacyanins (betanin) and of betaxanthins (vulgaxanthin I) as constituents of the total betalain content.
View Article and Find Full Text PDFComplete submergence (Sub) imposes detrimental effects on growth and survival of crop plants, including rice. Here, we investigated the beneficial effects of reduced glutathione (GSH) in mitigating Sub-induced adverse effects in two high-yielding rice cultivars BRRI dhan29 and dhan52. Both cultivars experienced growth defects, severe yellowing, necrosis and chlorosis, when they were completely immersed in water for 14 days.
View Article and Find Full Text PDFBeing a chilling-sensitive staple crop, rice (Oryza sativa L.) is vulnerable to climate change. The competence of rice to withstand chilling stress should, therefore, be enhanced through technological tools.
View Article and Find Full Text PDFThe glucosinolate-myrosinase system is a well-known defense system that has been shown to induce stomatal closure in Brassicales. Isothiocyanates are highly reactive hydrolysates of glucosinolates, and an isothiocyanate, allyl isothiocyanate (AITC), induces stomatal closure accompanied by elevation of free cytosolic Ca2+ concentration ([Ca2+]cyt) in Arabidopsis. It remains unknown whether AITC inhibits light-induced stomatal opening.
View Article and Find Full Text PDFBeing more sensitive to salt stress among the cereals, growth of rice ( L.) has been habitually affected by salinity. Although, several practices have evolved to sustain the growth of rice under salinity, the enormous role of calcium (Ca) as a signalling molecule in salt stress mitigation is still arcane.
View Article and Find Full Text PDF