Publications by authors named "Md Tabassum Hossain Emon"

The emerging variants of SARS coronavirus-2 (SARS-CoV-2) have been continuously spreading all over the world and have raised global health concerns. The B.1.

View Article and Find Full Text PDF

Coronavirus disease-19 (COVID-19) caused by SARS-CoV-2 has already killed more than one million people worldwide. Since novel coronavirus is a new virus, mining its genome sequence is of crucial importance for drug/vaccine(s) development. Whole genome sequencing is a helpful tool in identifying genetic changes that occur in a virus when it spreads through the population.

View Article and Find Full Text PDF

Genetic polymorphisms in DNA damage repair and tumor suppressor genes have been associated with increasing the risk of several types of cancer. Analyses of putative functional single nucleotide polymorphisms (SNP) in such genes can greatly improve human health by guiding choice of therapeutics. In this study, we selected nine genes responsible for various cancer types for gene enrichment analysis and found that BRCA1, ATM, and TP53 were more enriched in connectivity.

View Article and Find Full Text PDF

Background: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), is rapidly acquiring new mutations. Analysis of these mutations is necessary for gaining knowledge regarding different aspects of therapeutic development. Previously, we have reported a Sanger method-based genome sequence of a viral isolate named SARS-CoV-2 NIB-1, circulating in Bangladesh.

View Article and Find Full Text PDF

Coronavirus disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has become an immense threat to global public health. In this study, we performed complete genome sequencing of a SARS-CoV-2 isolate. More than 67,000 genome sequences were further inspected from Global Initiative on Sharing All Influenza Data (GISAID).

View Article and Find Full Text PDF

Streptomyces coelicolor is a gram-positive soil bacterium which is well known for the production of several antibiotics used in various biotechnological applications. But numerous proteins from its genome are considered hypothetical proteins. Therefore, the present study aimed to reveal the functions of a hypothetical protein from the genome of S.

View Article and Find Full Text PDF