Sensory information is represented and elaborated in hierarchical cortical systems that are thought to be dedicated to individual sensory modalities. This traditional view of sensory cortex organization has been challenged by recent evidence of multimodal responses in primary and association sensory areas. Although it is indisputable that sensory areas respond to multiple modalities, it remains unclear whether these multimodal responses reflect selective information processing for particular stimulus features.
View Article and Find Full Text PDFAlthough we routinely experience complex tactile patterns over our entire body, how we selectively experience multisite touch over our bodies remains poorly understood. Here, we characterized tactile search behavior over the full body using a tactile analog of the classic visual search task. On each trial, participants judged whether a target stimulus (e.
View Article and Find Full Text PDFSensory cortical systems often activate in parallel, even when stimulation is experienced through a single sensory modality [1-3]. Co-activations may reflect the interactive coupling between information-linked cortical systems or merely parallel but independent sensory processing. We report causal evidence consistent with the hypothesis that human somatosensory cortex (S1), which co-activates with auditory cortex during the processing of vibrations and textures [4-9], interactively couples to cortical systems that support auditory perception.
View Article and Find Full Text PDF