Accurately detecting the depolarization QRS complex in the ventricles is a fundamental requirement for cardiovascular disease detection using electrocardiography (ECG). In contrast to traditional signal enhancement algorithms, emerging neural network approaches have shown promise for QRS detection because of their generalizability on complex data. However, the inevitable noise present during ECG recording leads to a decrease in the performance of neural networks.
View Article and Find Full Text PDFTo improve the quality of modern life in the current society, low-power, highly sensitive, and reliable healthcare technology is necessary to monitor human health in real-time. In this study, we fabricated partially suspended monolayer graphene surface acoustic wave gas sensors (G-SAWs) with a love-mode wave to effectively detect ppt-level acetone gas molecules at room temperature. The sputtered SiO thin film on the surface of a black 36°YX-LiTaO (B-LT) substrate acted as a guiding layer, effectively reducing the noise and insertion loss.
View Article and Find Full Text PDFSpin waves (SWs), an ultra-low power magnetic excitation in ferro or antiferromagnetic media, have tremendous potential as transport less data carriers for post-CMOS technology using their wave interference properties. The concept of magnon interference originates from optical interference, resulting in a historical taboo of maintaining an identical wavevector for magnon interference-based devices. This makes the attainment of on-chip design reconfigurability challenging owing to the difficulty in phase tuning via external fields.
View Article and Find Full Text PDFMagnonics, an emerging research field that uses the quanta of spin waves as data carriers, has a potential to dominate the post-CMOS era owing to its intrinsic property of ultra-low power operation. Spin waves can be manipulated by a wide range of parameters; thus, they are suitable for sensing applications in a wide range of physical fields. In this study, we designed a highly sensitive, simple structure, and ultra-low power magnetic sensor using a simple CoFeB/YFeO bilayer structure.
View Article and Find Full Text PDF