Publications by authors named "Md Shahruzzaman"

Electrospinning of a heterogeneous solution is difficult to continue because the required process parameters are different for multiple phases. In this study, nanofibrous mats were successfully prepared from a heterogeneous blend of solid cellulose nanocrystals (CNC) and hydroxyapatite nanoparticles (HAp) in a solution mixture of chitosan and gelatin using an electrospinning technique. HAp and CNC were used as filler materials in the nanofibrous mats.

View Article and Find Full Text PDF

This study describes the fabrication of nanocomposites using electrospinning technique from poly lactic acid (PLA) and nano-hydroxyapatite (n-HAp). The prepared electrospun PLA-nHAP nanocomposite is intended to be used for drug delivery application. A hydrogen bond in between nHAp and PLA was confirmed by Fourier transform infrared (FT-IR) spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • A semi-interpenetrating polymer network (semi-IPN) hydrogel was developed using natural cellulose nanocrystals and synthetic polymers, loaded with gentamicin to enhance wound healing.
  • Characterization techniques confirmed the hydrogel's biocompatibility with over 95% survival of test cell lines and demonstrated its antimicrobial efficacy against Staphylococcus aureus and Escherichia coli, with significant zones of inhibition.
  • In vivo studies on mice showed complete wound healing without scarring in 12 days, highlighting the promising potential of this hydrogel for rapid recovery from acute wounds.
View Article and Find Full Text PDF

Various toxic chemicals are discharging to the environment due to rapid industrialization and polluting soil, water, and air causing numerous diseases including life-threatening cancer. Among these pollutants, Cr(VI) or hexavalent chromium is one of the most carcinogenic and toxic contaminants hostile to human health and other living things. Therefore, along with other contaminants, the removal of Cr(VI) efficiently is very crucial to keep our environment neat and clean.

View Article and Find Full Text PDF

For the first time, we incorporated mesoporous micro-silica (5 μm, pore size = 50 nm) as a filler in epoxy resin aiming to enter polymer into the pore of the silica. As expected, the thermal stability of the composite increased remarkably, followed by noteworthy thermal degradation kinetics when compared to the controlled cured epoxy resin. Composites were prepared by the direct dispersion of modified nano-silica, modified mesoporous micro-silica, unmodified mesoporous micro-silica, non-porous micro-silica, and irregular micro-silica of various pore sizes as fillers in diglycidyl ether of bisphenol-A epoxy resin via ultra-sonication and shear mixing, followed by oven-curing with 4,4-diaminodiphenyl sulfone.

View Article and Find Full Text PDF

In recent years, there have been increasingly rapid advances of using bioactive materials in tissue engineering applications. Bioactive materials constitute many different structures based upon ceramic, metallic or polymeric materials, and can elicit specific tissue responses. However, most of them are relatively brittle, stiff, and difficult to form into complex shapes.

View Article and Find Full Text PDF

The amphiphilic polymer-grafted silica was newly prepared as a stationary phase in high-performance liquid chromatography. Poly(4-vinylpyridine) with a trimethoxysilyl group at one end was grafted onto porous silica particles and the pyridyl side chains were quaternized with 1-bromooctadecane. The obtained poly(octadecylpyridinium)-grafted silica was characterized by elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy and Brunauer-Emmett-Teller analysis.

View Article and Find Full Text PDF