Publications by authors named "Md Shafayet Hossain"

Cardiovascular diagnostics relies heavily on the ECG (ECG), which reveals significant information about heart rhythm and function. Despite their significance, traditional ECG measures employing electrodes have limitations. As a result of extended electrode attachments, patients may experience skin irritation or pain, and motion artifacts may interfere with signal accuracy.

View Article and Find Full Text PDF

Electroencephalogram (EEG) signals immensely suffer from several physiological artifacts, including electrooculogram (EOG), electromyogram (EMG), and electrocardiogram (ECG) artifacts, which must be removed to ensure EEG's usability. This paper proposes a novel one-dimensional convolutional neural network (1D-CNN), i.e.

View Article and Find Full Text PDF

The electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals, highly non-stationary in nature, greatly suffers from motion artifacts while recorded using wearable sensors. Since successful detection of various neurological and neuromuscular disorders is greatly dependent upon clean EEG and fNIRS signals, it is a matter of utmost importance to remove/reduce motion artifacts from EEG and fNIRS signals using reliable and robust methods. In this regard, this paper proposes two robust methods: (i) Wavelet packet decomposition (WPD) and (ii) WPD in combination with canonical correlation analysis (WPD-CCA), for motion artifact correction from single-channel EEG and fNIRS signals.

View Article and Find Full Text PDF

The reverse transcription-polymerase chain reaction (RT-PCR) test is considered the current gold standard for the detection of coronavirus disease (COVID-19), although it suffers from some shortcomings, namely comparatively longer turnaround time, higher false-negative rates around 20-25%, and higher cost equipment. Therefore, finding an efficient, robust, accurate, and widely available, and accessible alternative to RT-PCR for COVID-19 diagnosis is a matter of utmost importance. This study proposes a complete blood count (CBC) biomarkers-based COVID-19 detection system using a stacking machine learning (SML) model, which could be a fast and less expensive alternative.

View Article and Find Full Text PDF

Cardiovascular diseases are the most common causes of death around the world. To detect and treat heart-related diseases, continuous blood pressure (BP) monitoring along with many other parameters are required. Several invasive and non-invasive methods have been developed for this purpose.

View Article and Find Full Text PDF

Harnessing the inherent anti-spoofing quality from electroencephalogram (EEG) signals has become a potential field of research in recent years. Although several studies have been conducted, still there are some vital challenges present in the deployment of EEG-based biometrics, which is stable and capable of handling the real-world scenario. One of the key challenges is the large signal variability of EEG when recorded on different days or sessions which impedes the performance of biometric systems significantly.

View Article and Find Full Text PDF

A real-time Bangla Sign Language interpreter can enable more than 200 k hearing and speech-impaired people to the mainstream workforce in Bangladesh. Bangla Sign Language (BdSL) recognition and detection is a challenging topic in computer vision and deep learning research because sign language recognition accuracy may vary on the skin tone, hand orientation, and background. This research has used deep machine learning models for accurate and reliable BdSL Alphabets and Numerals using two well-suited and robust datasets.

View Article and Find Full Text PDF

Tai Chi has been proven effective in preventing falls in older adults, improving the joint function of knee osteoarthritis patients, and improving the balance of stroke survivors. However, the effect of Tai Chi on human gait dynamics is still less understood. Studies conducted in this domain only relied on statistical and clinical measurements on the time-series gait data.

View Article and Find Full Text PDF