Publications by authors named "Md Sakib Hossain Shovon"

Sentiment analysis is a pivotal tool in understanding public opinion, consumer behavior, and social trends, underpinning applications ranging from market research to political analysis. However, existing sentiment analysis models frequently encounter challenges related to linguistic diversity, model generalizability, explainability, and limited availability of labeled datasets. To address these shortcomings, we propose the Transformer and Attention-based Bidirectional LSTM for Sentiment Analysis (TRABSA) model, a novel hybrid sentiment analysis framework that integrates transformer-based architecture, attention mechanism, and recurrent neural networks like BiLSTM.

View Article and Find Full Text PDF

This study presents a large multi-modal Bangla YouTube clickbait dataset consisting of 253,070 data points collected through an automated process using the YouTube API and Python web automation frameworks. The dataset contains 18 diverse features categorized into metadata, primary content, engagement statistics, and labels for individual videos from 58 Bangla YouTube channels. A rigorous preprocessing step has been applied to denoise, deduplicate, and remove bias from the features, ensuring unbiased and reliable analysis.

View Article and Find Full Text PDF

Supply chain management relies on accurate backorder prediction for optimizing inventory control, reducing costs, and enhancing customer satisfaction. Traditional machine-learning models struggle with large-scale datasets and complex relationships. This research introduces a novel methodological framework for supply chain backorder prediction, addressing the challenge of collecting large real-world datasets with 90% accuracy.

View Article and Find Full Text PDF

Fatal injuries and hospitalizations caused by accidental falls are significant problems among the elderly. Detecting falls in real-time is challenging, as many falls occur in a short period. Developing an automated monitoring system that can predict falls before they happen, provide safeguards during the fall, and issue remote notifications after the fall is essential to improving the level of care for the elderly.

View Article and Find Full Text PDF

Breast cancer is a significant health concern among women. Prompt diagnosis can diminish the mortality rate and direct patients to take steps for cancer treatment. Recently, deep learning has been employed to diagnose breast cancer in the context of digital pathology.

View Article and Find Full Text PDF