Resonant metasurfaces are devices composed of nanostructured subwavelength scatterers that generate narrow optical resonances, enabling applications in filtering, nonlinear optics, and molecular fingerprinting. It is highly desirable for these applications to incorporate such devices with multiple high-quality-factor resonances; however, it can be challenging to obtain more than a pair of narrow resonances in a single plasmonic surface. Here, we demonstrate a multiresonant metasurface that operates by extending the functionality of surface lattice resonances, which are the collective responses of arrays of metallic nanoparticles.
View Article and Find Full Text PDFA nanolens based on a metallic nanorod has been considered as a prospective candidate for transporting subwavelength information. Such a lens is tuned to a particular frequency by tailoring the length of the nanorod. In this paper, we have investigated the impact of filling ratio on the subwavelength imaging capabilities of such a lens.
View Article and Find Full Text PDF