We have previously shown that ritonavir (RTV), a highly active anti-retroviral therapy (HAART) drug, can cause endothelial dysfunction through oxidative stress. Several antioxidants including ginsenoside Rb1, a compound with antioxidant effect, can effectively block this side effect of RTV in endothelial cells. In the current study, we explored a mechanism by which ginsenoside Rb1 could protect these cells via binding of estrogen receptors (ERs).
View Article and Find Full Text PDFCessation of highly active antiretroviral therapy (HAART) in HIV-infected individual leads to a rebound of viral replication due to reactivation of a viral reservoir composed largely of latently infected memory CD4(+) T cells. Efforts to deplete this reservoir have focused on reactivation of transcriptionally silent latent proviruses. HIV provirus transcription depends critically on the positive transcription elongation factor b (P-TEFb), whose core components are cyclin-dependent kinase 9 (CDK9) and cyclin T1.
View Article and Find Full Text PDFResistin has been linked to obesity, insulin resistance, atherosclerosis, and the development of cardiovascular disease. Nevertheless, the effects and the molecular mechanisms of resistin on endothelial permeability, a key event in the development of atherosclerosis, inflammation, and vascular disease, are largely unknown. In order to determine the effect of resistin on endothelial permeability, human coronary artery endothelial cells (HCAECs) were treated with clinically relevant concentrations of resistin and the endothelial permeability was measured using the Transwell system with a Texas-Red-labeled dextran tracer.
View Article and Find Full Text PDFCardiovascular disease remains the number one killer in the United States and many other countries. Each year, there are enormous research efforts on its pathogenesis, prevention and treatment led by scientists worldwide. One of the most significant research areas is the impact and mechanisms of existing or new cardiovascular risk factors on the vascular system.
View Article and Find Full Text PDFUnlabelled: Resistin, originally described as an adipocyte-specific hormone, has been suggested to be an important link between obesity, insulin resistance and diabetes. Although its expression was initially defined in adipocytes, significant levels of resistin expression in humans are mainly found in mononuclear leukocytes, macrophages, spleen and bone marrow cells. Increasing evidence indicates that resistin plays important regulatory roles apart from its role in insulin resistance and diabetes in a variety of biological processes: atherosclerosis and cardiovascular disease (CVD), non-alcoholic fatty liver disease, autoimmune disease, malignancy, asthma, inflammatory bowel disease and chronic kidney disease.
View Article and Find Full Text PDFmiRNAs are small, endogenously expressed noncoding RNAs that regulate gene expression, mainly at the post-transcriptional level, via degradation or translational inhibition of their target mRNAs. Functionally, an individual miRNA can regulate the expression of multiple target genes. The study of miRNAs is rapidly growing and recent studies have revealed a significant role of miRNAs in vascular biology and disease.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
December 2009
Objective: The objective of this study was to determine the effects and molecular mechanisms of eotaxin, a newly discovered chemokine (CCL11), on endothelial permeability in the human coronary artery endothelial cells (HCAECs).
Methods And Results: Cells were treated with eotaxin, and the monolayer permeability was studied by using a costar transwell system with a Texas Red-labeled dextran tracer. Eotaxin significantly increased monolayer permeability in a concentration-dependent manner.
Highly active antiretroviral therapy (HAART) is often associated with endothelial dysfunction and cardiovascular complications. In this study, we determined whether HIV non-nucleoside reverse transcriptase inhibitor efavirenz (EFV) could increase endothelial permeability. Human coronary artery endothelial cells (HCAECs) were treated with EFV (1, 5 and 10 microg/ml) and endothelial permeability was determined by a transwell system with a fluorescence-labeled dextran tracer.
View Article and Find Full Text PDFThe purpose of this study was to determine the effects and mechanisms of sCD40L on endothelial dysfunction in both human coronary artery endothelial cells (HCAECs) and porcine coronary artery rings. HCAECs treated with sCD40L showed significant reductions of endothelial nitric oxide synthase (eNOS) mRNA and protein levels, eNOS mRNA stability, eNOS enzyme activity, and cellular NO levels, whereas superoxide anion (O(2)(-)) production was significantly increased. sCD40L enhanced eNOS mRNA 3'UTR binding to cytoplasmic molecules and induced a unique expression pattern of 95 microRNAs.
View Article and Find Full Text PDFObjective: Our previous studies revealed upregulation of stanniocalcin-1 (STC1) in cardiac vessels in dilated cardiomyopathy. However, the functional significance of STC1 is unknown. The objective of this study was to determine the effects of STC1 on TNF-alpha-induced monolayer permeability of human coronary artery endothelial cells (HCAECs).
View Article and Find Full Text PDFHyperhomocysteinemia (HHcy) has been established as a potent independent risk factor for cardiovascular disease (CVD) and the underlying mechanism is largely unknown. We were the first to propose that hypomethylation is the key biochemical mechanism by which homocysteine (Hcy) inhibits endothelial cell (EC) growth. We reported that clinically relevant concentrations of Hcy (10-50 micromol/L) exerts highly selective inhibitory effects on cyclin A transcription and EC growth through a hypomethylation related mechanism, which blocks cell cycle progression and endothelium regeneration.
View Article and Find Full Text PDFWe reported previously that homocysteine (Hcy) inhibits endothelial cell (EC) growth by transcriptional inhibition of the cyclin A gene via a hypomethylation-related mechanism. In this study, we examined the effect of Hcy on epigenetic modification of the cyclin A gene and its biologic role in human ECs. Cyclin A mRNA levels were significantly suppressed by Hcy and a DNA methyltransferase inhibitor.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2006
In this study, the effects of acetylsalicylic acid (aspirin) on the expression of uPAR and the mechanism by which it regulates expression of uPAR was examined in two different colon cancer cell lines HCT116 and GEO, respectively. The study shows that under physiological concentration, aspirin upregulates steady-state level expression of uPAR mRNA as well as expression of uPAR protein. Using a transient transfection assay, a region corresponding to -1 to -398 region of uPAR promoter has been identified which shows maximum responsiveness to aspirin treatment and found that this region is sufficient for the aspirin-induced up-regulation of uPAR.
View Article and Find Full Text PDFThe phosphatidylinositol 3-kinase (PI3K)/Akt pathway plays important roles for prostate cancer cell survival, and the androgen receptor (AR) plays essential roles for prostate cancer cell proliferation. How these two signals cooperate to control cell growth and death, however, remains unclear and debated. Here we provide the first linkage by the identification of Forkhead transcription factor FOXO3a, the PI3K/Akt downstream substrate, as a positive regulator for the induction of AR gene expression.
View Article and Find Full Text PDFThe antitumor effect of curcumin (diferuloylmethane) is well established. However, there have been no unbiased studies to identify novel molecular targets of this compound. We therefore undertook a gene expression profiling study to identify novel targets of curcumin.
View Article and Find Full Text PDFGlycogen synthase kinase (GSK)-3beta is a constitutively active, proline-directed serine/threonine kinase that controls growth modulation and tumorigenesis through multiple intracellular signaling pathways. How GSK-3beta regulates signaling pathways induced by cytokines such as tumor necrosis factor (TNF) is poorly understood. In this study, we used fibroblasts derived from GSK-3beta gene-deleted mice to understand the role of this kinase in TNF signaling.
View Article and Find Full Text PDFThe urokinase-type plasminogen activator receptor (u-PAR) plays a central role in cell migration, growth, and invasion and is regulated, in part, transcriptionally. In mice, u-PAR expression is restricted to a few tissues, one of which is the colon. We therefore screened a colon expression library for regulators of u-PAR promoter activity and identified a zinc finger protein bearing consensus sequences to the Kruppel-like family of transcription factors and showing partial homology with one of the members, KLF4.
View Article and Find Full Text PDF