Publications by authors named "Md Reyazul Islam"

Tobacco mild green mosaic virus (TMGMV)-like nanocarriers were designed for gene delivery to plant cells. High aspect ratio TMGMVs were coated with a polycationic biopolymer, poly(allylamine) hydrochloride (PAH), to generate highly charged nanomaterials (TMGMV-PAH; 56.20 ± 4.

View Article and Find Full Text PDF

Fluorescence monitoring of ATP in different organelles is now feasible with a few biosensors developed, which, however, show low sensitivity, limited biocompatibility, and accessibility. Small-molecule ATP probes that alleviate those limitations thus have received much attention recently, leading to a few ATP probes that target several organelles except for the nucleus. We disclose the first small-molecule probe that selectively detects nuclear ATP through reversible binding, with 25-fold fluorescence enhancement at pH 7.

View Article and Find Full Text PDF

Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene delivery platforms (single-walled carbon nanotubes, SWCNTs) to chloroplasts, key organelles involved in efforts to improve plant photosynthesis, assimilation of nutrients, and delivery of agrochemicals. A biorecognition approach of coating the nanomaterials with a rationally designed chloroplast targeting peptide improved the delivery of CDs with molecular baskets (TP-β-CD) for delivery of agrochemicals and of plasmid DNA coated SWCNT (TP-pATV1-SWCNT) from 47% to 70% and from 39% to 57% of chloroplasts in leaves, respectively.

View Article and Find Full Text PDF

To advance a novel concept of debulking virus in the oral cavity, the primary site of viral replication, virus-trapping proteins CTB-ACE2 were expressed in chloroplasts and clinical-grade plant material was developed to meet FDA requirements. Chewing gum (2 g) containing plant cells expressed CTB-ACE2 up to 17.2 mg ACE2/g dry weight (11.

View Article and Find Full Text PDF

Plants show great potential for producing recombinant proteins in a cost-effective manner. Many strategies have therefore been employed to express high levels of recombinant proteins in plants. Although foreign domains are fused to target proteins for high expression or as an affinity tag for purification, the retention of foreign domains on a target protein may be undesirable, especially for biomedical purposes.

View Article and Find Full Text PDF

We produced a biologically active phage-encoded endolysin, LysP11, in N. benthamiana. Plant-produced LysP11 exhibited robust antimicrobial activity against E.

View Article and Find Full Text PDF

Plants have recently received a great deal of attention as a means of producing recombinant proteins. Despite this, a limited number of recombinant proteins are currently on the market and, if plants are to be more widely used, a cost-effective and efficient purification method is urgently needed. Although affinity tags are convenient tools for protein purification, the presence of a tag on the recombinant protein is undesirable for many applications.

View Article and Find Full Text PDF

A human pepsinogen C (hPGC) gene was synthesized with rice-optimized codon usage and cloned into a rice expression vector containing the promoter, signal peptide, and terminator derived from the rice α-amylase 3D (Ramy3D) gene. In addition, a 6-His tag was added to the 3' end of the synthetic hPGC gene for easy purification. The plant expression vector was introduced into rice calli (Oryza sativa L.

View Article and Find Full Text PDF

Objective: To investigate in vitro antioxidant and in vivo antitumor activity of the crude methanolic extract of Aponogeton undulatus (A. undulatus) (MAU) along with its various organic fractions.

Methods: A.

View Article and Find Full Text PDF