Publications by authors named "Md Rafiul Hassan"

Elderly and individuals with disabilities can greatly benefit from human activity recognition (HAR) systems, which have recently advanced significantly due to the integration of the Internet of Things (IoT) and artificial intelligence (AI). The blending of IoT and AI methodologies into HAR systems has the potential to enable these populations to lead more autonomous and comfortable lives. HAR systems are equipped with various sensors, including motion capture sensors, microcontrollers, and transceivers, which supply data to assorted AI and machine learning (ML) algorithms for subsequent analyses.

View Article and Find Full Text PDF

We propose a novel framework that combines state-of-the-art deep learning approaches with pre- and post-processing algorithms for particle detection in complex/heterogeneous backgrounds common in the manufacturing domain. Traditional methods, like size analyzers and those based on dilution, image processing, or deep learning, typically excel with homogeneous backgrounds. Yet, they often fall short in accurately detecting particles against the intricate and varied backgrounds characteristic of heterogeneous particle-substrate (HPS) interfaces in manufacturing.

View Article and Find Full Text PDF

The rapid advancement of modern communication technologies necessitates the development of generalized multi-access frameworks and the continuous implementation of rate splitting, augmented with semantic awareness. This trend, coupled with the mounting pressure on wireless services, underscores the need for intelligent approaches to radio signal propagation. In response to these challenges, intelligent reflecting surfaces (IRS) have garnered significant attention for their ability to control data transmission systems in a goal-oriented and dynamic manner.

View Article and Find Full Text PDF
Article Synopsis
  • This paper presents a new framework that combines convolutional neural networks (CNN) and genetic algorithms (GA) to quickly and accurately detect COVID-19 cases using chest X-ray images and multi-access edge computing technology.
  • The framework aims to address challenges like heavy hospital workloads and delays in traditional RT-PCR testing, which can hinder timely treatment for patients.
  • The model introduces an innovative CNN architecture optimized by GA to enhance performance, facilitating access for users with 5G devices to utilize this automatic COVID-19 detection tool.
View Article and Find Full Text PDF

Background: Massive biological datasets are generated in different locations all over the world. Analysis of these datasets is required in order to extract knowledge that might be helpful for biologists, physicians and pharmacists. Recently, analysis of biological networks has received a lot of attention, as an understanding of the network can reveal information about life at the cellular level.

View Article and Find Full Text PDF

This paper presents an ensemble of feature selection and classification technique for classifying two types of breast lesion, benign and malignant. Features are selected based on their area under the ROC curves (AUC) which are then classified using a hybrid hidden Markov model (HMM)-fuzzy approach. HMM generated log-likelihood values are used to generate minimized fuzzy rules which are further optimized using gradient descent algorithms in order to enhance classification performance.

View Article and Find Full Text PDF

Background: Microarray gene expression profiling has provided extensive datasets that can describe characteristics of cancer patients. An important challenge for this type of data is the discovery of gene sets which can be used as the basis of developing a clinical predictor for cancer. It is desirable that such gene sets be compact, give accurate predictions across many classifiers, be biologically relevant and have good biological process coverage.

View Article and Find Full Text PDF