The efficient immobilization of redox mediators remains a major challenge in the design of mediated enzyme electrode platforms. In addition to stability, the ability of the redox-active material to mediate electron transfer from the active-site buried enzymes, such as flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH) and lactate oxidase (LOx), is also crucial. Conventional immobilization techniques can be synthetically challenging, and immobilized mediators often exhibit limited durability, particularly in continuous operation.
View Article and Find Full Text PDFEnzyme-mediator bioconjugation is emerging as a building block for designing electrode platforms for the construction of biosensors and biofuel cells. Here, we report a one-pot bioconjugation technique for flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) and thionine (TH) using a series of cross-linkers, including epoxy, -hydroxysuccinimide (NHS), and aldehydes. In this technique, FAD-GDH and thionine are conjugated through an amine cross-linking reaction to generate a redox network, which has been successfully employed for the oxidation of glucose.
View Article and Find Full Text PDFSoybean ( L.) is an important crop in Asia, accounting for 17% of global soybean cultivation. However, this crop faces formidable challenges from the devastating foliar disease, Asian Soybean Rust (ASR), caused by , a biotrophic fungus with a broad host range, causing substantial yield losses (10-100%) in Asia.
View Article and Find Full Text PDFIn the context of climate change, the need to ensure food security and safety has taken center stage. Chemical fertilizers and pesticides are traditionally used to achieve higher plant productivity and improved plant protection from biotic stresses. However, the widespread use of fertilizers and pesticides has led to significant risks to human health and the environment, which are further compounded by the emissions of greenhouse gases during fertilizer and pesticide production and application, contributing to global warming and climate change.
View Article and Find Full Text PDFNanomaterials, including carbon nanotubes, graphene oxide, metal-organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient carriers to enhance enzyme activity through substrate channeling while improving enzyme stability and reusability. However, there are significant debates surrounding aspects such as enzyme orientation, enzyme loading, retention of enzyme activity, and immobilization techniques. Consequently, these subjects have become the focus of intensive research in the realm of multi-enzyme cascade reactions.
View Article and Find Full Text PDFTwenty vegetable amaranth (VA) genotypes were evaluated to assess the variability, associations, path coefficient, and principal component analysis (PCA) of morpho-chemical traits. The genotypes exhibited adequate antioxidant colorants, phytochemicals, and antiradical capacity with significant variations across genotypes. Genetic parameters revealed selection criteria for the majority of the traits for improving amaranth foliage yield (FY).
View Article and Find Full Text PDFAsian soybean rust (ASR), caused by , is one of the most serious soybean () diseases in tropical and subtropical regions. To facilitate the development of resistant varieties using gene pyramiding, DNA markers closely linked to seven resistance genes, namely, , , , , , , and , were identified. Linkage analysis of resistance-related traits and marker genotypes using 13 segregating populations of ASR resistance, including eight previously published by our group and five newly developed populations, identified the resistance loci with markers at intervals of less than 2.
View Article and Find Full Text PDF(Lib.) de Bary is a broad host-range fungus that infects an inclusive array of plant species and afflicts significant yield losses globally. Despite being a notorious pathogen, it has an uncomplicated life cycle consisting of either basal infection from myceliogenically germinated sclerotia or aerial infection from ascospores of carpogenically germinated sclerotia.
View Article and Find Full Text PDFThe newly emerged wheat blast fungus () is a severe threat to global wheat production. The fungus is a distinct, exceptionally diverse lineage of the , causing rice blast disease. Genome-based approaches employing -specific markers are used to detect field isolates.
View Article and Find Full Text PDFA new disease of Cosmos sulphureus Cav. causing external and internal stem discoloration, premature death, and wilting was observed in 27.8% of plants with an average disease severity rating of 4.
View Article and Find Full Text PDFDrought is a major environmental threat to agricultural productivity and food security across the world. Therefore, addressing the detrimental effects of drought on vital crops like soybean has a significant impact on sustainable food production. Priming plants with organic compounds is now being considered as a promising technique for alleviating the negative effects of drought on plants.
View Article and Find Full Text PDFPea (Pisum sativum L.) is of global importance as a food crop for its edible pod and seed. A new disease causing the tan to light brown blighted stems and pods has occurred in pea (P.
View Article and Find Full Text PDFAmaranth has two morphological types described as red and green morphs. Previous studies have extensively characterised red morph amaranth regarding both morphological and chemical properties including antioxidant activity, antioxidant phytochemical profile, mineral content and proximate composition. However, there is scarce information concerning green morph amaranth.
View Article and Find Full Text PDFStems and pods of hyacinth bean cultivated in a farmer's field in Gazipur District, Bangladesh, were found rotted in nearly 5% hyacinth bean plants. A fungus having fluffy mycelium and large sclerotia was isolated from affected tissues. Combined results of morphological, molecular and pathological analyses identified the fungus as (Lib) de Bary.
View Article and Find Full Text PDFMethods Mol Biol
December 2018
A detailed description of methods most frequently used for the identification and characterization of beneficial microbial strains is presented in this chapter. The methods include microbiological, biochemical, and molecular approaches. Microbiological and biochemical methods comprise a broad range of techniques that are based on the analysis of phosphate solubilization, nitrogenase activity, indole-3-acetic acid production, bacterial motility, presence of catalase and nitrate reductase enzyme, Gram's staining of the cell wall, siderophore production, and microbial chemotaxis.
View Article and Find Full Text PDFIn Arabidopsis thaliana, significant efforts to determine the effect of naturally occurring variation between phenotypically divergent accessions on different biotic or abiotic stresses are underway. Although it is usually assumed that induced systemic resistance (ISR) against pathogen will covary with plant genetic variation, this assumption has not been tested rigorously in previous experiments. Here, we investigated heritable variation in resistance as well as Penicillium simplicissimum GP17-2-mediated ISR to the bacteria Pseudomonas syringae pv.
View Article and Find Full Text PDFPlant growth-promoting fungi (PGPF) have the potential to confer several benefits to plants in terms of growth and protection against pests and pathogens. In the present study, we tested whether a PGPF isolate, Penicillium spp. GP15-1 (derived from zoysiagrass rhizospheres), stimulates growth and disease resistance in the cucumber plant.
View Article and Find Full Text PDFPlant growth-promoting fungi (PGPF) are effective biocontrol agents for a number of soil-borne diseases and are known for their ability to trigger induced systemic resistance (ISR). In this study, we investigated the mechanisms triggered by PGPF Fusarium equiseti GF19-1, which is known to increase pathogen resistance in plants, by using GF19-1 spores and the culture filtrate (CF) to treat the roots of Arabidopsis thaliana. Subsequently, the leaves were challenged with Pseudomonas syringae pv tomato DC3000 (Pst) bacteria.
View Article and Find Full Text PDFArabidopsis thaliana grown in soil amended with barley grain inocula of Penicillium simplicissimum GP17-2 or receiving root treatment with its culture filtrate (CF) exhibited clear resistance to Pseudomonas syringae pv. tomato DC3000 (Pst). To assess the contribution of different defense pathways, Arabidopsis genotypes implicated in salicylic acid (SA) signaling expressing the NahG transgene or carrying disruption in NPR1 (npr1), jasmonic acid (JA) signaling (jar1) and ethylene (ET) signaling (ein2) were tested.
View Article and Find Full Text PDF