The influence of electrostatic conditions (salt concentration of the solution and vesicle surface charge density) on the size distribution of self-assembled giant unilamellar vesicles (GUVs) is considered. The membranes of GUVs are synthesized by a mixture of dioleoylphosphatidylglycerol and dioleoylphosphatidylcholine in a physiological buffer using the natural swelling method. The experimental results are presented in the form of a set of histograms.
View Article and Find Full Text PDFStretching in membranes of cells and vesicles plays important roles in various physiological and physicochemical phenomena. Irreversible electroporation (IRE) is the irreversible permeabilization of the membrane through the application of a series of electrical field pulses of micro- to millisecond duration. IRE induces lateral tension due to stretching in the membranes of giant unilamellar vesicles (GUVs).
View Article and Find Full Text PDFLipid membranes of giant unilamellar vesicles (GUVs) with diameters greater than 10 μm are promising model membranes for investigating the physical and biological properties of the biomembranes of cells. These are extensively used for the study of the interaction of various membrane-active agents, where purified and similar-size oil-free GUVs are necessary. Although the existing membrane filtering method provides the required quality and quantity of GUVs, it includes a relatively expensive double-headed peristaltic pump.
View Article and Find Full Text PDF