Glioblastoma (GBM) is the most malignant brain cancer and one of the leading causes of cancer-related death globally. So, identifying potential molecular signatures and associated drug molecules are crucial for diagnosis and therapies of GBM. This study suggested GBM-causing ten key genes (ASPM, CCNB2, CDK1, AURKA, TOP2A, CHEK1, CDCA8, SMC4, MCM10, and RAD51AP1) from nine transcriptomics datasets by combining supervised and unsupervised learning results.
View Article and Find Full Text PDFBackground: Identification of differentially expressed genes (DEGs) under two or more experimental conditions is an important task for elucidating the molecular basis of phenotypic variation. In the recent years, next generation sequencing (RNA-seq) has become very attractive and competitive alternative to the microarrays because of reducing the cost of sequencing and limitations of microarrays. A number of methods have been developed for detecting the DEGs from RNA-seq data.
View Article and Find Full Text PDFIdentification of differentially expressed (DE) genes with two or more conditions is an important task for discovery of few biomarker genes. Significance Analysis of Microarrays (SAM) is a popular statistical approach for identification of DE genes for both small- and large-sample cases. However, it is sensitive to outlying gene expressions and produces low power in presence of outliers.
View Article and Find Full Text PDFBackground: Histopathological assessment has a low potential to predict clinical outcome in patients with the same stage of colorectal cancer. More specific and sensitive biomarkers to determine patients' survival are needed. We aimed to determine gene expression signatures as reliable prognostic marker that could predict survival of colorectal cancer patients with Dukes' B and C.
View Article and Find Full Text PDF