Protein synthesis via translation is a central process involving several essential proteins called translation factors. Although traditionally described as cellular "housekeepers," multiple studies have now supported that protein initiation and elongation factors regulate cell growth, apoptosis, and tumorigenesis. One such translation factor is eukaryotic elongation factor 1 alpha 2 (EEF1A2), a member of the eukaryotic elongation factor family, which has a canonical role in the delivery of aminoacyl-tRNA to the A-site of the ribosome in a guanosine 5'-triphosphate (GTP)-dependent manner.
View Article and Find Full Text PDFBackground: The eukaryotic elongation factor, EEF1A2, has been identified as an oncogene in various solid tumors. Here, we have identified a novel function of EEF1A2 in angiogenesis.
Methods: Chick chorioallantoic membrane, tubulogenesis, aortic ring, Matrigel plug, and skin wound healing assays established EEF1A2's role in angiogenesis.
IQGAP2, a member of the IQGAP family, functions as a tumor suppressor in most of the cancers. Unlike IQGAP1 and IQGAP3, which function as oncogenes in breast cancer, the role of IQGAP2 is still unexplored. Here we report a reduced expression of IQGAP2, which was associated with lymph node positivity, lymphovascular invasion, and higher age in breast cancer patients.
View Article and Find Full Text PDFSmall interfering RNA (siRNA) exhibits gene-specific RNAi activity by the formation of RISC complex with mRNA of gene. The structural modification of siRNA at appropriate positions affects the structure of RISC complex and then RNAi activity. The modified siRNA are mostly prepared from the incorporation of sugar ring modified, and nucleobase modified RNA nucleotides.
View Article and Find Full Text PDFAims: Ever since EEF1A2's identification as a putative oncogene in breast cancer, it has stimulated curiosity due to its contrasting role in predicting the prognostic values in breast cancer patients. Contradicting reports suggest it to be playing a pro-survival as well as a negative role in the survival of patients. This prompted us to find the association of this protein with molecular subtypes in breast cancer and its effect on EMT in representative cell lines.
View Article and Find Full Text PDFAims: Glioblastomas are highly aggressive brain tumors with a very poor survival rate. EEF1A2, the proto-oncogenic isoform of the EEF1A translation factor family, has been found to be overexpressed and promoting tumorigenesis in multiple cancers. Interestingly, recent studies reported reduced expression of this protein in brain tumors, drawing our attention to find the functional role and mechanism of this protein in brain tumor progression.
View Article and Find Full Text PDFBackground: Prostate cancer is the most common form of cancer in males and accounts for high cancer related deaths. Therapeutic advancement in prostate cancer has not been able to reduce the mortality burden of prostate cancer, which warrants further research. FRG1 which affects angiogenesis and cell migration in Xenopus, can be a potential player in tumorigenesis.
View Article and Find Full Text PDFEukaryotic translation factors, especially initiation factors have garnered much attention with regards to their role in the onset and progression of different cancers. However, the expression levels and prognostic significance of translation elongation factors remain poorly explored in different cancers. In this study, we have investigated the mRNA transcript levels of seven translation elongation factors in different cancer types using Oncomine and TCGA databases.
View Article and Find Full Text PDFIQGAPs is a family of proteins which comprises three members, in humans. The expression pattern and role of IQGAP1 has been well established in many cancers, whereas those of IQGAP2 and IQGAP3, have mostly remained unexplored. We used available large datasets, to explore the pan-cancer status of these two genes in-silico.
View Article and Find Full Text PDFIn this study we unravel the mechanism underlying the antitumorigenic effects of Peanut agglutinin (PNA) isolated from Arachis hypogea in Dalton's lymphoma (DL) bearing mice and elucidated the mechanism in vitro in HeLa cells. In vivo PNA administration at 1 and 2 mg/kg body weight reduced DL proliferation with increase in autophagic and apoptotic characteristics. In vitro data showed that PNA at 0.
View Article and Find Full Text PDF