Cameras are widely adopted for high image quality with the rapid advancement of complementary metal-oxide-semiconductor (CMOS) image sensors while offloading vision applications' computation to the cloud. It raises concern for time-critical applications such as autonomous driving, surveillance, and defense systems since moving pixels from the sensor's focal plane are expensive. This paper presents a hardware architecture for smart cameras that understands the salient regions from an image frame and then performs high-level inference computation for sensor-level information creation instead of transporting raw pixels.
View Article and Find Full Text PDFThe astounding development of optical sensing imaging technology, coupled with the impressive improvements in machine learning algorithms, has increased our ability to understand and extract information from scenic events. In most cases, Convolution neural networks (CNNs) are largely adopted to infer knowledge due to their surprising success in automation, surveillance, and many other application domains. However, the convolution operations' overwhelming computation demand has somewhat limited their use in remote sensing edge devices.
View Article and Find Full Text PDF