In this manuscript, we have studied the microstructure of the axonal cytoskeleton and adopted a bottom-up approach to evaluate the mechanical responses of axons. The cytoskeleton of the axon includes the microtubules (MT), Tau proteins (Tau), neurofilaments (NF), and microfilaments (MF). Although most of the rigidity of the axons is due to the MT, the viscoelastic response of axons comes from the Tau.
View Article and Find Full Text PDFResearch on the role of reactive oxygen species (ROS) in the aging process has advanced significantly over the last two decades. In light of recent findings, ROS takes part in the aging process of cells along with contributing to various physiological signaling pathways. Antioxidants being cells' natural defense mechanism against ROS-mediated alteration, play an imperative role to maintain intracellular ROS homeostasis.
View Article and Find Full Text PDFThe COVID-19 pandemic caused by the SARS-CoV-2, a ribonucleic acid (RNA) virus that emerged less than two years ago but has caused nearly 6.1 million deaths to date. Recently developed variants of the SARS-CoV-2 virus have been shown to be more potent and expanded at a faster rate.
View Article and Find Full Text PDFTraditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades.
View Article and Find Full Text PDFThe perineuronal net (PNN) region of the brain's extracellular matrix (ECM) surrounds the neural networks within the brain tissue. The PNN is a protective net-like structure regulating neuronal activity such as neurotransmission, charge balance, and action potential generation. Shock-induced damage of this essential component may lead to neuronal cell death and neurodegenerations.
View Article and Find Full Text PDFIn hydrodynamics, the event of dynamic bubble growth in a pure liquid under tensile pressure is known as cavitation. The same event can also be observed in soft materials (, elastomers and hydrogels). However, for soft materials, bubble/cavity growth is either defined as cavitation if the bubble growth is elastic and reversible or as fracture if the cavity growth is by material failure and irreversible.
View Article and Find Full Text PDFMicrotubule-associated protein (MAP) tau is a cross-linking molecule that provides structural stability to axonal microtubules (MT). It is considered a potential biomarker for Alzheimer's disease (AD), dementia, and other neurological disorders. It is also a signature protein for Traumatic Brain Injury (TBI) assessment.
View Article and Find Full Text PDFExistent literature has limitations regarding the mechanical behavior of axonal cytoskeletal components in a high strain rate scenario, which is mainly due to limitations regarding the structure of some components such as tau protein and neurofilaments (NF). This study performs molecular dynamics (MD) simulations on NFs to extract their strain rate-dependent behavior. It is found that they are highly stretchable and show multiple stages of unfolding.
View Article and Find Full Text PDFComput Struct Biotechnol J
March 2021
Recent nanoscopy and super-resolution microscopy studies have substantiated the structural contribution of periodic actin-spectrin lattice to the axonal cytoskeleton of neuron. However, sufficient mechanical insight is not present for spectrin and actin-spectrin network, especially in high strain rate scenario. To quantify the mechanical behavior of actin-spectrin cytoskeleton in such conditions, this study determines individual stretching characteristics of actin and spectrin at high strain rate by molecular dynamics (MD) simulation.
View Article and Find Full Text PDFPhosphorylation has been hypothesized to alter the ability of tau protein to bind with microtubules (MT), and pathological level of phosphorylation can incorporate formation of Paired Helical Filaments (PHF) in affected tau. Study of the effect of phosphorylation on different domains of tau (projection domain, microtubule binding sites and N-terminus tail) is important to obtain insight about tau neuropathology. In an earlier study, we have already obtained the mechanical properties and behavior of single tau and dimerized tau and observed tau-MT interaction for normal level of phosphorylation.
View Article and Find Full Text PDFWe have studied the molecular level cavitation mechanisms and bubble growth kinetics in soft gelatin hydrogel and water. The apparent difference in cavitation threshold pressure between that generates in pure water and that in gelatin hydrogel is considered. Gelatin, which is derived from collagen, is frequently used as a brain simulant material.
View Article and Find Full Text PDF