Publications by authors named "Md Borhan Mia"

We present polarization-free Bragg filters having subwavelength gratings (SWGs) in the lateral cladding region. This Bragg design expands modal fields toward upper cladding, resulting in enhanced light interaction with sensing analytes. Two device configurations are proposed and examined, one with index-matched coupling between transverse electric (TE) and transverse magnetic (TM) modes and the other one with hybrid-mode (HM) coupling.

View Article and Find Full Text PDF

Electromagnetic coupling via an evanescent field or radiative wave is a primary characteristic of light, allowing optical signal/power transfer in a photonic circuit but limiting integration density. A leaky mode, which combines both evanescent field and radiative wave, causes stronger coupling and is thus considered not ideal for dense integration. Here we show that a leaky oscillation with anisotropic perturbation rather can achieve completely zero crosstalk realized by subwavelength grating (SWG) metamaterials.

View Article and Find Full Text PDF

Optical delay lines control the flow of light in time, introducing phase and group delays for engineering interferences and ultrashort pulses. Photonic integration of such optical delay lines is essential for chip-scale lightwave signal processing and pulse control. However, typical photonic delay lines based on long spiral waveguides require extensively large chip footprints, ranging from mm to cm scales.

View Article and Find Full Text PDF

A photonic Bragg grating is a fundamental building block that reflects the direction of wave propagation through spatial phase modulation and can be implemented using sidewall corrugation. However, due to the asymmetric aspect ratio of a waveguide cross section, typical Bragg gratings exhibit a strong polarization sensitivity. Here, we show that photonic Bragg gratings with cladding asymmetry can enable polarization-independent notch filters by rotating input polarizations.

View Article and Find Full Text PDF

We present a broadband integrated photonic polarization splitter and rotator (PSR) using adiabatically tapered coupled waveguides with subwavelength grating (SWG) claddings. The PSR adiabatically rotates and splits the fundamental transverse-magnetic (TM) input to the fundamental transverse-electric (TE) mode in the coupler waveguide, while passing the TE input through the same waveguide. The SWGs work as an anisotropic metamaterial and facilitate modal conversions, making the PSR efficient and broadband.

View Article and Find Full Text PDF

We present an ultra-broadband silicon photonic polarization beam splitter (PBS) using adiabatically tapered extreme skin-depth (eskid) waveguides. Highly anisotropic metamaterial claddings of the eskid waveguides suppress the crosstalk of transverse-electric (TE) mode, while the large birefringence of the eskid waveguide efficiently cross-couples the transverse-magnetic (TM) mode. Two eskid waveguides are adiabatically tapered to smoothly translate TM mode to the coupled port via mode evolution while keeping the TE mode in the through port.

View Article and Find Full Text PDF

In this Letter, we present a high extinction ratio and compact on-chip polarization beam splitter (PBS), based on an extreme skin-depth (eskid) waveguide. Subwavelength-scale gratings form an effectively anisotropic metamaterial cladding and introduce a large birefringence. The anisotropic dielectric perturbation of the metamaterial cladding suppresses the TE polarization extinction via exceptional coupling, while the large birefringence efficiently cross-couples the TM mode, thus reducing the coupling length.

View Article and Find Full Text PDF

We present a heterogeneously coupled Si/SiO/SiN waveguide structure that can achieve extremely high dispersions (> | ± 10| ps · nmkm). A strong mode coupling between the Si and SiN waveguides introduces a normal dispersion to symmetric mode and an anomalous dispersion to anti-symmetric mode, and the large group velocity difference between the two waveguides results in such high dispersions. Geometric parameters of the structure control the peak dispersions and the central wavelength of the mode coupling, and these engineering capabilities are studied numerically.

View Article and Find Full Text PDF

A triangular lattice dispersion compensating photonic crystal fiber is presented in this paper. The fiber produces high birefringence and operates at fundamental mode only. The full vector finite element method with a perfectly matched absorbing layer boundary condition is applied to investigate the guiding properties of the proposed fiber.

View Article and Find Full Text PDF