We present a deep learning-based method that corrects motion artifacts and thus accelerates data acquisition and reconstruction of magnetic resonance images. The novel model, the Motion Artifact Correction by Swin Network (MACS-Net), uses a Swin transformer layer as the fundamental block and the Unet architecture as the neural network backbone. We employ a hierarchical transformer with shifted windows to extract multiscale contextual features during encoding.
View Article and Find Full Text PDFDeep learning (DL) in magnetic resonance imaging (MRI) shows excellent performance in image reconstruction from undersampled k-space data. Artifact-free and high-quality MRI reconstruction is essential for ensuring accurate diagnosis, supporting clinical decision-making, enhancing patient safety, facilitating efficient workflows, and contributing to the validity of research studies and clinical trials. Recently, deep learning has demonstrated several advantages over conventional MRI reconstruction methods.
View Article and Find Full Text PDFWe propose a dual-domain deep learning technique for accelerating compressed sensing magnetic resonance image reconstruction. An advanced convolutional neural network with residual connectivity and an attention mechanism was developed for frequency and image domains. First, the sensor domain subnetwork estimates the unmeasured frequencies of k-space to reduce aliasing artifacts.
View Article and Find Full Text PDFWhen sparsely sampled data are used to accelerate magnetic resonance imaging (MRI), conventional reconstruction approaches produce significant artifacts that obscure the content of the image. To remove aliasing artifacts, we propose an advanced convolutional neural network (CNN) called fully dense attention CNN (FDA-CNN). We updated the Unet model with the fully dense connectivity and attention mechanism for MRI reconstruction.
View Article and Find Full Text PDFCancer remains a deadly disease. We developed a lightweight, accurate, general-purpose deep learning algorithm for skin cancer classification. Squeeze-MNet combines a Squeeze algorithm for digital hair removal during preprocessing and a MobileNet deep learning model with predefined weights.
View Article and Find Full Text PDFThis study proposes a robust depth map framework based on a convolutional neural network (CNN) to calculate disparities using multi-direction epipolar plane images (EPIs). A combination of three-dimensional (3D) and two-dimensional (2D) CNN-based deep learning networks is used to extract the features from each input stream separately. The 3D convolutional blocks are adapted according to the disparity of different directions of epipolar images, and 2D-CNNs are employed to minimize data loss.
View Article and Find Full Text PDF