Typical guided-mode resonance (GMR) transmission filter design, which is based on a single ridge per period, necessitates multiple etching/fabrication steps for implementing an array of filters (having different transmission bands) on the same substrate. To address this problem, we demonstrate dual-period narrow bandpass GMR filters that offer more degrees of freedom, two periods and two fill-factors, for tuning the filter characteristics and achieving wider stop bands without changing the grating height. A set of six transmission filters with well-separated passbands in the short-wave infrared region was designed using COMSOL Multiphysics simulations and produced on the same silicon-on-quartz wafer in a single fabrication run.
View Article and Find Full Text PDFThe standard dip-coating dye-loading technique for dye-sensitized solar cells (DSSCs) remains essentially unchanged since modern DSSCs were introduced in 1991. This technique constitutes up to 80% of the DSSC fabrication time. Dip-coating of DSSC dyes not only costs time, but also generates a large amount of dye waste, necessitates use of organic solvents, requires sensitization under dark conditions, and often results in inefficient sensitization.
View Article and Find Full Text PDF