Walking speed is considered a reliable assessment tool for any movement-related functional activities of an individual (i.e., patients and healthy controls) by caregivers and clinicians.
View Article and Find Full Text PDFPurpose: Crosstalk in myographic signals is a major hindrance to the understanding of local information related to individual muscle function. This review aims to analyse the problem of crosstalk in electromyography and mechanomyography.
Methods: An initial search of the SCOPUS database using an appropriate set of keywords yielded 290 studies, and 59 potential studies were selected after all the records were screened using the eligibility criteria.
Background: The relationship between surface electromyography (EMG) and force have been the subject of ongoing investigations and remain a subject of controversy. Even under static conditions, the relationships at different sensor placement locations in the biceps brachii (BB) muscle are complex.
Objective: The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations.
Introduction: In this study, we analyzed the crosstalk in mechanomyographic (MMG) signals generated by the extensor digitorum (ED), extensor carpi ulnaris (ECU), and flexor carpi ulnaris (FCU) muscles of the forearm during wrist flexion (WF) and extension (WE) and radial (RD) and ulnar (UD) deviations.
Methods: Twenty right-handed men (mean ± SD age=26.7 ± 3.
Problem Statement: In mechanomyography (MMG), crosstalk refers to the contamination of the signal from the muscle of interest by the signal from another muscle or muscle group that is in close proximity.
Purpose: The aim of the present study was two-fold: i) to quantify the level of crosstalk in the mechanomyographic (MMG) signals from the longitudinal (Lo), lateral (La) and transverse (Tr) axes of the extensor digitorum (ED), extensor carpi ulnaris (ECU) and flexor carpi ulnaris (FCU) muscles during isometric wrist flexion (WF) and extension (WE), radial (RD) and ulnar (UD) deviations; and ii) to analyze whether the three-directional MMG signals influence the level of crosstalk between the muscle groups during these wrist postures.
Methods: Twenty, healthy right-handed men (mean ± SD: age = 26.
Background: The relationship between surface electromyography (EMG) and force have been the subject of ongoing investigations and remain a subject of controversy. Even under static conditions, the relationships at different sensor placement locations in the biceps brachii (BB) muscle are complex.
Objective: The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations.
Objectives: Normally, surface electromyography electrodes are used to evaluate the activity of superficial muscles during various kinds of voluntary contractions of muscle fiber. The objective of the present study was to investigate the effect of repetitive isometric contractions on the three heads of the triceps brachii muscle during handgrip force exercise.
Methods: Myoelectric signals were recorded from the lateral, long and medial heads of the triceps brachii muscle in 13 healthy males during maximal isometric contractions for 10 s of concurrent handgrip force and elbow extension.
Purpose: This study aimed: i) to examine the relationship between the magnitude of cross-talk in mechanomyographic (MMG) signals generated by the extensor digitorum (ED), extensor carpi ulnaris (ECU), and flexor carpi ulnaris (FCU) muscles with the sub-maximal to maximal isometric grip force, and with the anthropometric parameters of the forearm, and ii) to quantify the distribution of the cross-talk in the MMG signal to determine if it appears due to the signal component of intramuscular pressure waves produced by the muscle fibers geometrical changes or due to the limb tremor.
Methods: Twenty, right-handed healthy men (mean ± SD: age = 26.7±3.
Sports video tracking is a research topic that has attained increasing attention due to its high commercial potential. A number of sports, including tennis, soccer, gymnastics, running, golf, badminton and cricket have been utilised to display the novel ideas in sports motion tracking. The main challenge associated with this research concerns the extraction of a highly complex articulated motion from a video scene.
View Article and Find Full Text PDFCricket bowling generates forces with torques on the upper limb muscles and makes the biceps brachii (BB) muscle vulnerable to overuse injury. The aim of this study was to investigate whether there are differences in the amplitude of the EMG signal of the BB muscle during fast and spin delivery, during the seven phases of both types of bowling and the kinesiological interpretation of the bowling arm for muscle contraction mechanisms during bowling. A group of 16 male amateur bowlers participated in this study, among them 8 fast bowlers (FB) and 8 spin bowlers (SB).
View Article and Find Full Text PDFSurface electromyography (SEMG) has been widely used to analyze the biceps brachii (BB) muscle during voluntary contraction, and the effect of the interelectrode distance has been studied. However, the effect of anthropometric variations and the placement of electrodes on the BB activity during arm wrestling (i.e.
View Article and Find Full Text PDF