Publications by authors named "Md Ashiqur Rahman Laskar"

Two-dimensional materials (2DMs) have gained significant interest for resistive-switching memory toward neuromorphic and in-memory computing (IMC). To achieve atomic-level miniaturization, we introduce vertical hexagonal boron nitride (h-BN) memristors with graphene edge contacts. In addition to enabling three-dimensional (3D) integration (i.

View Article and Find Full Text PDF

Ultra-low-noise solid-state nanopores are attractive for high-accuracy single-molecule sensing. A conventional silicon platform introduces acute capacitive noise to the system, which seriously limits the recording bandwidth. Recently, we have demonstrated the creation of thin triangular membranes on an insulating crystal sapphire wafer to eliminate the parasitic device capacitance.

View Article and Find Full Text PDF

Solid-state nanopores have broad applications from single-molecule biosensing to diagnostics and sequencing. The high capacitive noise from conventionally used conductive silicon substrates, however, has seriously limited both their sensing accuracy and recording speed. A new approach is proposed here for forming nanopore membranes on insulating sapphire wafers to promote low-noise nanopore sensing.

View Article and Find Full Text PDF