Ice accumulation on aircraft is known to negatively impact the aerodynamic and mechanical operation, sometimes resulting in catastrophic failure. Recently, microwave resonators have gained interest as durable and reliable frost and ice detectors. Here, a microwave resonator sensor with built-in heating capability patterned into the ground plane was designed, fabricated, and tested to investigate real-time ice and frost growth.
View Article and Find Full Text PDFThe liquid repellency enabled by air bubbles trapped within surface roughness features has drawn the attention of many researchers over the past century. The effects of surface roughness on superhydrophobicity have been extensively studied, mainly using regularly textured, idealized geometries. In comparison, fewer works have investigated the wettability of randomly textured surfaces, although they are much more similar to scalable and bioinspired surfaces.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2020
Existing methods for fabricating oil-repellent paper rely on highly fluorinated and therefore toxic chemicals. Non-fluorinated omniphobic paper with low contact angle hysteresis (CAH) has not been demonstrated. We report a facile method to prepare omniphobic paper through the vapor-phase deposition of chlorosilane molecules to create "liquid-like" polymer brushes on commercially available release liners.
View Article and Find Full Text PDF