This study integrated hydrochemical analysis, isotopic analysis, the integrated water quality index (IWQI), and the health risk assessment model to analyze hydrochemical characteristics, quality, and nitrate health risks in a typical agricultural and industrial (i.e., Holocene and Pleistocene) simultaneously affected by anthropogenic activities, as well as to explore the recharge mechanisms of the groundwater.
View Article and Find Full Text PDFSurface water pollution caused by the discharge of effluents from industrial estates has become a major concern for Dhaka (Bangladesh). This study aims to have a concise look at the severe river water pollution, mainly from effluents discharged from the tannery village. Effluent samples were collected from five ejected points, including the central effluent treatment plant (CETP), twenty adjacent river water, and two pond water nearby Hemayetpur, Savar.
View Article and Find Full Text PDFWater pollution is a worldwide concern that has growing severe in developed and developing nations. Increasing groundwater pollution threatening both the physical and environmental health of billions of people as well as economic progress. Consequently, hydrogeochemistry, water quality and potential health risk assessment is crucial for water resource management.
View Article and Find Full Text PDFThe interaction between water vapor and natural/anthropogenic airborne particles deposits a massive amount of trace elements in the ecosystem. As the principal source region of the Indian monsoon originated from the Bay of Bengal, atmospheric trace elements in Bangladesh have impacted atmospheric wet deposition along the pathway, even reaching the headwaters in the Asian water tower. However, no study reports the atmospheric wet deposition of trace elements at the spatiotemporal scale.
View Article and Find Full Text PDFObesity is a complex disorder associated with immense health consequences including high risk of cardiovascular diseases, diabetes, and cancer. Abnormality in the thyroid gland, genetics, less physical activity, uptake of excessive diet, and leptin resistance are critical factors in the development of obesity. To determine the treatment strategy, understanding the pathophysiology of obesity is crucial.
View Article and Find Full Text PDFThis investigation concentrates on the possibility of using gamma radiation for the decomposition of organic pollutants in textile wastewater and reuse as irrigation water. The wastewater sample was irradiated at four different absorbed doses of 3, 5, 8, and 10 kilo Gray (kGy). After irradiation at 8-10 kGy, physicochemical parameters, i.
View Article and Find Full Text PDFMesoporous (~7-8 nm) biopolymer hydrogel beads (HNTs-FeNPs@Alg/β-CD) were synthesised via ionic polymerisation route to separate heavy metal ions. The adsorption capacity of HNTs-FeNPs@Alg/β-CD was higher than that of raw halloysite nano tubes (HNTs), iron nanoparticles (FeNPs), and bare alginate beads. FeNPs induce the magnetic properties of adsorbent and metal-based functional groups in and around the hydrogel beads.
View Article and Find Full Text PDFLow dimensional electrocatalytic heterostructures have recently attracted significant attention in the catalysis community due to their highly tuneable interfaces and exciting electronic features, opening up new possibilities for effective nanometric control of both the charge carriers and energetic states of several intermediate catalytic species. In-depth understanding of electrocatalytic routes at the interface between two or more low-dimensional nanostructures has triggered the development of heterostructure nanocatalysts with extraordinary properties for water splitting reactions, NRR and CORR. This tutorial review provides an overview of the most recent advances in synthetic strategies for 0D-1D, 0D-2D, and 2D-2D nanoheterostructures, discussing key aspects of their electrocatalytic performances from experimental and computational perspectives as well as their applications towards the development of overall water splitting and Zn-air battery devices.
View Article and Find Full Text PDFThe design of alternative earth-abundant van der Waals (vdW) nanoheterostructures for bifunctional oxygen evolution/reduction (OER/ORR) electrocatalysis is of paramount importance to fabricate energy-related devices. Herein, we report a simple metal-organic framework (MOF)-derived synthetic strategy to fabricate low-dimensional (LD) nanohybrids formed by zero-dimensional (0D) ZrO nanoparticles (NPs) and heteroatom-doped two-dimensional (2D) carbon nanostructures. The 2D platforms controlled the electronic structures of interfacial Zr atoms, thus producing optimized electron polarization for boron and nitrogen-doped carbon (BCN)/ZrO nanohybrids.
View Article and Find Full Text PDFExcessive body fat and high cholesterol are one of the leading reasons for triggering cardiovascular risk factors, obesity, and type 2 diabetes. Beta-glucan (BG)-based dietary fibers are found to be effective for lowering fat digestion in the gastrointestinal tract. However, the fat capturing mechanism of BG in aqueous medium is still elusive.
View Article and Find Full Text PDFAtomic catalysts (AC) are gaining extensive research interest as the most active new frontier in heterogeneous catalysis due to their unique electronic structures and maximum atom-utilization efficiencies. Among all the atom catalysts, atomically dispersed heteronuclear dual-atom catalysts (HDACs), which are featured with asymmetric active sites, have recently opened new pathways in the field of advancing atomic catalysis. In this review, the up-to-date investigations on heteronuclear dual-atom catalysts together with the last advances on their theoretical predictions and experimental constructions are summarized.
View Article and Find Full Text PDFThe electrocatalytic properties of some endohedral fullerenes for hydrogen evolution reactions (HER) were recently predicted by DFT calculations. Nonetheless, the experimental catalytic performance under realistic electrochemical environments of these 0D-nanomaterials have not been explored. Here, for the first time, we disclose the HER electrocatalytic behavior of seven MN@2 (2 = 68, 78, and 80) fullerenes (GdN@(7)-C, YN@(7)-C, LuN@(7)-C, ScN@(7)-C, ScN@(6)-C, ScN@(5)-C, and ScN@(6140)-C) using a combination of experimental and theoretical techniques.
View Article and Find Full Text PDFNature-inspired hierarchical architectures have recently drawn enormous interest in the materials science community, being considered as promising materials for the development of high-performance wearable electronic devices. Their highly dynamic interfacial interactions have opened new horizons towards the fabrication of sustainable sensing and energy storage materials with multifunctional properties. Nature-inspired assemblies can exhibit impressive properties including ultrahigh sensitivity, excellent energy density and coulombic efficiency behaviors as well as ultralong cycling stability and durability, which can be finely tuned and enhanced by controlling synergistic interfacial interactions between their individual components.
View Article and Find Full Text PDFPlatinum (Pt)-based-nanomaterials are currently the most successful catalysts for the oxygen reduction reaction (ORR) in electrochemical energy conversion devices such as fuel cells and metal-air batteries. Nonetheless, Pt catalysts have serious drawbacks, including low abundance in nature, sluggish kinetics, and very high costs, which limit their practical applications. Herein, we report the first rationally designed nonprecious Co-Cu bimetallic metal-organic framework (MOF) using a low-temperature hydrothermal method that outperforms the electrocatalytic activity of Pt/C for ORR in alkaline environments.
View Article and Find Full Text PDFThe development of low-dimensional (LD) supramolecular materials with multifunctional electrocatalytic properties has sparked the attention of the catalysis community. Herein, we report the synthesis of a new class of 0D-2D heterostructures composed of boron carbon nitride nanosheets (BCN NSs) and fullerene molecules (C/F) that exhibit multifunctional electrocatalytic properties for the hydrogen evolution/oxidation reactions (HER/HOR) and the oxygen evolution/reduction reactions (OER/ORR). The electrocatalytic properties were studied with varying F:BCN weight ratios to optimize the intermolecular electron transfer (ET) from the BCN NSs to the electron-accepting C molecules.
View Article and Find Full Text PDFAn emerging class of heterostructures with unprecedented (photo)electrocatalytic behavior, involving the combination of fullerenes and low-dimensional (LD) nanohybrids, is currently expanding the field of energy materials. The unique physical and chemical properties of fullerenes have offered new opportunities to tailor both the electronic structures and the catalytic activities of the nanohybrid structures. Here, we comprehensively review the synthetic approaches to prepare fullerene-based hybrids with LD (0D, 1D, and 2D) materials in addition to their resulting structural and catalytic properties.
View Article and Find Full Text PDFWhile extensive work has been done on the generation of adsorbents by carbonization of large polymeric structures, few works are currently available for the use of monomeric carbon molecules as precursors during carbonization. In this work we report the formation of a carbon adsorbent material from the carbonization of glucose in the presence of zinc oxide (ZnO) nanoparticle templates. Carbonization at 1,000 °C under inert atmosphere yields a product with Brunauer-Emmett-Teller (BET) surface area of 1,228.
View Article and Find Full Text PDFThe thermoelectric effect encompasses three different effects, i.e. Seebeck effect, Peltier effect, and Thomson effect, which are considered as thermally activated materials that alter directions in smart materials.
View Article and Find Full Text PDFFullerene-based low-dimensional (LD) heterostructures have emerged as excellent energy conversion materials. We constructed van der Waals 1T-MoS/C 0D-2D heterostructures via a one-pot synthetic approach for catalytic hydrogen generation. The interfacial 1T-MoS-C and C-C interactions as well as their electrocatalytic properties were finely controlled by varying the weight percentages of the fullerenes.
View Article and Find Full Text PDFPorous carbon encapsulated non-precious metal nanocatalysts have recently opened the ways towards the development of high-performance water remediation and energy conversion technologies. Herein, we report a facile, scalable and green synthetic methodology to fabricate porous carbon encapsulated transition metal nanocatalysts (M@TP: M = Cu, Ni, Fe and Co) using commercial tissue paper. The morphology, crystalline structure, chemical composition and textural properties of the M@TP nanocatalysts were thoroughly characterized.
View Article and Find Full Text PDFThe rational design of multifunctional catalysts that use non-noble metals to facilitate the interconversion between H, O, and HO is an intense area of investigation. Bimetallic nanosystems with highly tunable electronic, structural, and catalytic properties that depend on their composition, structure, and size have attracted considerable attention. Herein, we report the synthesis of bimetallic nickel-copper (NiCu) alloy nanoparticles confined in a sp carbon framework that exhibits trifunctional catalytic properties toward hydrogen evolution (HER), oxygen reduction (ORR), and oxygen evolution (OER) reactions.
View Article and Find Full Text PDFIn recent years, the incorporation of molecular enzymes into nanostructured frameworks to create efficient energy conversion biomaterials has gained increasing interest as a promising strategy owing to both the dynamic behavior of proteins for their electrocatalytic function and the unique properties of the synergistic interactions between proteins and nanosized materials. Herein, we review the impact of proteins on energy conversion fields and the contribution of proteins to the improved activity of the resulting nanocomposites. We address different strategies to fabricate protein-based nanocatalysts as well as current knowledge on the structure-function relationships of enzymes during the catalytic processes.
View Article and Find Full Text PDFThere is no doubt that cancer is now one of the most formidable diseases in the world; despite all the efforts and research, common treatment routes, including chemotherapy, photodynamic therapy, and photothermal therapy, suffer from different limitations in terms of their efficiency and performance. For this reason, different strategies are being explored to improve the efficiency of the traditional drugs reported to date. In this study, we have redirected the function of one of these drugs (5-fluorouracil, 5-FU) by combining it with a graphene-gold nanocomposite in different molar ratios that has been exceedingly used for biological research development.
View Article and Find Full Text PDFIn this report, highly crystalline and well-dispersed nano-sized nickel metal organic framework (MOFs) was decorated over graphene oxide (GO) and carbon nanotubes (CNTs) platforms to form hybrid nanocomposites. These as-synthesized hybrid nanocomposites were synthesized through a one-pot green solvothermal method. The prepared nanocomposites were characterized by SEM, TEM, EDS, XRD, FT-IR, Raman and TGA techniques.
View Article and Find Full Text PDF