Publications by authors named "Md Anzarul Haque"

The microtubule associated protein, tau, is implicated in a multitude of neurodegenerative disorders that are collectively termed as tauopathies. These disorders are characterized by the presence of tau aggregates within the brain of afflicted individuals. Mutations within the MAPT gene that encodes the tau protein form the genetic backdrop for familial forms of tauopathies, such as frontotemporal dementia (FTD), but the molecular consequences of such alterations and their pathological effects are unclear.

View Article and Find Full Text PDF

The pathological misfolding and aggregation of the microtubule associated protein tau (MAPT), a full length Tau2N4R with 441aa, is considered the principal disease relevant constituent in tauopathies including Alzheimer's disease (AD) with an imbalanced ratio in 3R/4R isoforms. The exact cellular fluid composition, properties, and changes that coincide with tau misfolding, seed formation, and propagation events remain obscure. The proteostasis network, along with the associated osmolytes, is responsible for maintaining the presence of tau in its native structure or dealing with misfolding.

View Article and Find Full Text PDF
Article Synopsis
  • The HIV-1 envelope glycoprotein (Env) is crucial for the virus's ability to enter cells and evade the immune system, but previous methods to study its dynamics using peptides may affect its structure.
  • The research developed an amber-free system for introducing noncanonical amino acids (ncAAs) into the HIV-1 Env, allowing for an accurate study of its dynamics using single-molecule Förster resonance energy transfer (smFRET).
  • This new approach facilitates real-time observation of how HIV-1 enters and moves within cells, confirming previous findings and opening avenues for studying viral behavior without compromising Env's structural integrity.
View Article and Find Full Text PDF

Dementia is a brain disease which results in irreversible and progressive loss of cognition and motor activity. Despite global efforts, there is no simple and reliable diagnosis or treatment option. Current diagnosis involves indirect testing of commonly inaccessible biofluids and low-resolution brain imaging.

View Article and Find Full Text PDF

An increase in the number of antibiotic-resistant bacterial pathogens, in recent times, has posed a great challenge for treating the affected patients. This has paved the way for the development and design of antibiotics against the previously less explored newer targets. Among these, peptidoglycan (PG) biosynthesis serves as a promising target for the design and development of novel drugs.

View Article and Find Full Text PDF

Aging, tau pathology, and chronic inflammation in the brain play crucial roles in synaptic loss, neurodegeneration, and cognitive decline in tauopathies, including Alzheimer's disease. Senescent cells accumulate in the aging brain, accelerate the aging process, and promote tauopathy progression through their abnormal inflammatory secretome known as the senescence-associated secretory phenotype (SASP). Tau oligomers (TauO)-the most neurotoxic tau species-are known to induce senescence and the SASP, which subsequently promote neuropathology, inflammation, oxidative stress, synaptic dysfunction, neuronal death, and cognitive dysfunction.

View Article and Find Full Text PDF
Article Synopsis
  • Humanized monoclonal antibody lecanemab is a new treatment for Alzheimer's disease that targets soluble amyloid-β protofibrils, differing from earlier treatments that focused only on symptoms.
  • The research in Alzheimer's treatment faces challenges due to a limited understanding of the structures and behaviors of intrinsically disordered proteins and amyloids.
  • This review outlines biophysical methods to study these proteins' heterogeneity and pathogenicity, and discusses strategies for developing new drugs by simulating in vivo conditions and targeting harmful protein aggregates.
View Article and Find Full Text PDF

Human Aurora kinase A (AurA) has recently garnered the attention of researchers worldwide as a promising effective mitotic drug target for its involvement in cancer and related inflammatory anomalies. This study has explored the binding affinity of newly identified heteroarene-fused anthraquinone derivatives against AurA. Molecular docking analyses showed that all the heteroanthraquinone compounds bind to AurA with different affinities.

View Article and Find Full Text PDF

The increase of antibiotic-resistant bacterial pathogens has created challenges in treatment and warranted the design of antibiotics against comparatively less exploited targets. The peptidoglycan (PG) biosynthesis delineates unique pathways for the design and development of a novel class of drugs. Mur ligases are an essential component of bacterial cell wall synthesis that play a pivotal role in PG biosynthesis to maintain internal osmotic pressure and cell shape.

View Article and Find Full Text PDF

DNA Gyrase is a type II topoisomerase that utilizes the energy of ATP hydrolysis for introducing negative supercoils in DNA. The protein comprises two subunits GyrA and GyrB that form a GyrAGyrB heterotetramer. GyrB subunit contains the N-terminal domain (GBNTD) for ATPase activity and the C-terminal domain (GBCTD) for interaction with GyrA and DNA.

View Article and Find Full Text PDF

The quest for effective anticancer therapeutics continues to be extensively pursued. Over the past century, several drugs have been developed, however, a majority of these drugs have a poor therapeutic index and increased toxicity profile. Hence, there still exists ample opportunity to discover safe and effective anticancer drugs.

View Article and Find Full Text PDF

Drug repurposing is an efficient alternative approach to counter the increasing drug-resistant pathogens to treat infectious diseases. FtsZ is an essential bacterial cytokinesis protein involved in the formation of cell-division complex and targeting FtsZ using FDA approved drugs is a promising strategy to identify and develop a new antibacterial drug. Using in silico pharmacophore-based screening of drug bank, molecular docking and molecular dynamics simulations, we identified six drugs inhibiting the function of stFtsZ from Salmonella Typhi.

View Article and Find Full Text PDF

MurE ligase is known to play a significant role in peptidoglycan biosynthesis. It catalyzes the addition of meso-diaminopimelic acid to nucleotide precursor. The protein can adopt different conformations for its proper functioning.

View Article and Find Full Text PDF

Pyruvate dehydrogenase kinase-3 (PDK3) plays important role in the glucose metabolism and is associated with cancer progression, and thus being considered as an attractive target for cancer therapy. In this study, we employed spectroscopic techniques to study the structural and conformational changes in the PDK3 at varying pH conditions ranging from pH 2.0 to 12.

View Article and Find Full Text PDF

MurE ligase catalyzes the assembly of peptide moiety, an essential component of bacterial cell wall. We have explored the conformational stability and unfolding equilibrium behaviour of the protein MurE ligase by determining the conformational free energy, entropy and enthalpy parameters under stress conditions. MurE from Salmonella enterica Serovar Typhi was cloned, expressed and purified.

View Article and Find Full Text PDF
Article Synopsis
  • Carbonic anhydrase IX (CAIX) is a protein that is overproduced in cancer cells, especially in low-oxygen environments, helping tumors survive by regulating pH levels.
  • Researchers studied how CAIX unfolds and changes structure in response to urea, finding that this denaturation is a reversible, two-state process.
  • By using both experimental techniques and computer simulations, they were able to confirm similar findings about CAIX's behavior under stress, providing insights into its thermodynamic properties and stability.
View Article and Find Full Text PDF

In this study, we have analyzed the structural and functional changes in the nature of Allium sativum Protease Inhibitor (ASPI) on undergoing various denaturation with variable range of pH, temperature and urea (at pH 8.2). ASPI being anti-tryptic in nature has native molecular mass of ∼15kDa.

View Article and Find Full Text PDF

DNA gyrase, a type II topoisomerase maintains the topology of DNA by introducing negative supercoils using energy generated by ATP hydrolysis. It is composed of two subunits, GyrA and GyrB (GyrAGyrB hetero-tetramer). GyrB comprises two domains, a 43kDa amino N-terminus (GBNTD) and 47kDa carboxyl C- terminus (GBCTD).

View Article and Find Full Text PDF

Knowledge of folding/unfolding pathway is fundamental basis to study protein structure and stability. Human carbonic anhydrase II (HCAII) is a ∼29kDa, β-sheet dominated monomeric protein of 259 amino acid residues. In the present study, the urea-induced denaturation of HCAII was carried out which was a tri-phasic process, i.

View Article and Find Full Text PDF

Carbonic anhydrase VA (CAVA) is a mitochondrial enzyme belonging to the α-family of CAs, which is involved in several physiological processes including ureagenesis, lipogenesis, gluconeogenesis and neuronal transmission. Here, we have tried to understand the folding mechanism of CAVA using guanidine hydrochloride (GdnHCl)-induced denaturation at pH 8.0 and 25°C.

View Article and Find Full Text PDF

Hereditary hemochromatosis factor E (HFE) is a type 1 transmembrane protein, and acts as a negative regulator of iron-uptake. The equilibrium unfolding and conformational stability of the HFE protein was examined in the presence of urea. The folding and unfolding transitions were monitored with the help of circular dichroism (CD), intrinsic fluorescence and absorption spectroscopy.

View Article and Find Full Text PDF

Sheep serum albumin (SSA) is a 583 amino acid residues long multidomain monomeric protein which is rich in cysteine and low in tryptophan content. The serum albumins (from human, bovine and sheep) play a vital role among all proteins investigated until now, as they are the most copious circulatory proteins. We have purified SSA from sheep kidneys by a simple and efficient two-step purification procedure.

View Article and Find Full Text PDF

A sequence alignment of mammalian cytochromes c with yeast iso-1-cytochrome c (y-cyt-c) shows that the yeast protein contains five extra N-terminal residues. We have been interested in understanding the question: What is the role of these five extra N-terminal residues in folding and stability of the protein? To answer this question we have prepared five deletants of y-cyt-c by sequentially removing these extra residues. During our studies on the wild type (WT) protein and its deletants, we observed that the amount of secondary structure in the guanidinium chloride (GdmCl)-induced denatured (D) state of each protein is different from that of the heat-induced denatured (H) state.

View Article and Find Full Text PDF

Carbonic anhydrase IX (CAIX) is a transmembrane glycoprotein, associated with tumor, acidification which leads to the cancer, and is considered as a potential biomarker for hypoxia-induced cancers. The overexpression of CAIX is linked with hypoxia condition which is mediated by the transcription of hypoxia-induced factor (HIF-1). To understand the biophysical properties of CAIX, we have carried out a reversible isothermal denaturation of CAIX-induced by GdmCl at pH 8.

View Article and Find Full Text PDF

Calcium/calmodulin-dependent protein kinase IV (CaMKIV) is a multifunctional enzyme which belongs to the Ser/Thr kinase family. CaMKIV plays important role in varieties of biological processes such as gene expression regulation, memory consolidation, bone growth, T-cell maturation, sperm motility, regulation of microtubule dynamics, cell-cycle progression, and apoptosis. To measure stability parameters, urea-induced denaturation of CaMKIV was carried out at pH 7.

View Article and Find Full Text PDF