Publications by authors named "Md Altaf Ul-Amin"

The ongoing global pandemic caused by the SARS-CoV-2 virus has demanded the urgent search for effective therapeutic interventions. In response, our research aimed at identifying natural products (NPs) with potential inhibitory effects on the entry of the SARS-CoV-2 spike (S) protein into host cells. Utilizing the Protein Data Bank Japan (PDBJ) and BindingDB databases, we isolated 204 S-glycoprotein sequences and conducted a clustering analysis to identify similarities and differences among them.

View Article and Find Full Text PDF

The Unani Tibb is a medical system of Greek descent that has undergone substantial dissemination since the 11th century and is currently prevalent in modern South and Central Asia, particularly in primary health care. The ingredients of Unani herbal medicines are primarily derived from plants. Our research aimed to address the pressing issues of antibiotic resistance, multi-drug resistance, and the emergence of superbugs by examining the molecular-level effects of Unani ingredients as potential new natural antibiotic candidates.

View Article and Find Full Text PDF

Pancreatic cancer is one of the most adverse diseases and it is very difficult to treat because the cancer cells formed in the pancreas intertwine themselves with nearby blood vessels and connective tissue. Hence, the surgical procedure of treatment becomes complicated and it does not always lead to a cure. Histopathological diagnosis is the usual approach for cancer diagnosis.

View Article and Find Full Text PDF

Given the direct association with malignant ventricular arrhythmias, cardiotoxicity is a major concern in drug design. In the past decades, computational models based on the quantitative structure-activity relationship have been proposed to screen out cardiotoxic compounds and have shown promising results. The combination of molecular fingerprint and the machine learning model shows stable performance for a wide spectrum of problems; however, not long after the advent of the graph neural network (GNN) deep learning model and its variant (e.

View Article and Find Full Text PDF

Background And Objective: Defining and separating cancer subtypes is essential for facilitating personalized therapy modality and prognosis of patients. The definition of subtypes has been constantly recalibrated as a result of our deepened understanding. During this recalibration, researchers often rely on clustering of cancer data to provide an intuitive visual reference that could reveal the intrinsic characteristics of subtypes.

View Article and Find Full Text PDF

Stage-based sleep screening is a widely-used tool in both healthcare and neuroscientific research, as it allows for the accurate assessment of sleep patterns and stages. In this paper, we propose a novel framework that is based on authoritative guidance in sleep medicine and is designed to automatically capture the time-frequency characteristics of sleep electroencephalogram (EEG) signals in order to make staging decisions. Our framework consists of two main phases: a feature extraction process that partitions the input EEG spectrograms into a sequence of time-frequency patches, and a staging phase that searches for correlations between the extracted features and the defining characteristics of sleep stages.

View Article and Find Full Text PDF

Context: Novel kinds of antibiotics are needed to combat the emergence of antibacterial resistance. Natural products (NPs) have shown potential as antibiotic candidates. Current experimental methods are not yet capable of exploring the massive, redundant, and noise-involved chemical space of NPs.

View Article and Find Full Text PDF

The use of herbal medicines in recent decades has increased because their side effects are considered lower than conventional medicine. Unani herbal medicines are often used in Southern Asia. These herbal medicines are usually composed of several types of medicinal plants to treat various diseases.

View Article and Find Full Text PDF

Sleep screening is an important tool for both healthcare and neuroscientific research. Automatic sleep scoring is an alternative to the time-consuming gold-standard manual scoring procedure. Recently there have seen promising results on automatic stage scoring by extracting spatio-temporal features via deep neural networks from electroencephalogram (EEG).

View Article and Find Full Text PDF

Background: Phytochemicals or secondary metabolites are low molecular weight organic compounds with little function in plant growth and development. Nevertheless, the metabolite diversity govern not only the phenetics of an organism but may also inform the evolutionary pattern and adaptation of green plants to the changing environment. Plant chemoinformatics analyzes the chemical system of natural products using computational tools and robust mathematical algorithms.

View Article and Find Full Text PDF

Jamu is the traditional Indonesian herbal medicine system that is considered to have many benefits such as serving as a cure for diseases or maintaining sound health. A Jamu medicine is generally made from a mixture of several herbs. Natural antibiotics can provide a way to handle the problem of antibiotic resistance.

View Article and Find Full Text PDF

Cancer is one of the deadliest diseases worldwide. Accurate diagnosis and classification of cancer subtypes are indispensable for effective clinical treatment. Promising results on automatic cancer subtyping systems have been published recently with the emergence of various deep learning methods.

View Article and Find Full Text PDF

Recent advances in information technology have brought forth a paradigm shift in science, especially in the biology and medical fields [...

View Article and Find Full Text PDF

Using the Plethysmograph (PPG) signal to estimate blood pressure (BP) is attractive given the convenience and possibility of continuous measurement. However, due to the personal differences and the insufficiency of data, the dilemma between the accuracy for a small dataset and the robustness as a general method remains. To this end, we scrutinized the whole pipeline from the feature selection to regression model construction based on a one-month experiment with 11 subjects.

View Article and Find Full Text PDF

The plants produce numerous types of secondary metabolites which have pharmacological importance in drug development for different diseases. Computational methods widely use the fingerprints of the metabolites to understand different properties and similarities among metabolites and for the prediction of chemical reactions etc. In this work, we developed three different deep neural network models (DNN) to predict the antibacterial property of plant metabolites.

View Article and Find Full Text PDF

Sleep screening based on the construction of sleep stages is one of the major tool for the assessment of sleep quality and early detection of sleep-related disorders. Due to the inherent variability such as inter-users anatomical variability and the inter-systems differences, representation learning of sleep stages in order to obtain the stable and reliable characteristics is runoff for downstream tasks in sleep science. In this paper, we investigated feasibility of the EEG-based symbolic representation for sleep stages.

View Article and Find Full Text PDF

Telework has become a universal working style under the background of COVID-19. With the increased time of working at home, problems, such as lack of physical activities and prolonged sedentary behavior become more prominent. In this situation, a self-managing working pattern regulation may be the most practical way to maintain worker's well-being.

View Article and Find Full Text PDF

Background: We performed in silico prediction of the interactions between compounds of Jamu herbs and human proteins by utilizing data-intensive science and machine learning methods. Verifying the proteins that are targeted by compounds of natural herbs will be helpful to select natural herb-based drug candidates.

Methods: Initially, data related to compounds, target proteins, and interactions between them were collected from open access databases.

View Article and Find Full Text PDF

Background: Glucosinolates (GSLs) are plant secondary metabolites that contain nitrogen-containing compounds. They are important in the plant defense system and known to provide protection against cancer in humans. Currently, increasing the amount of data generated from various omics technologies serves as a hotspot for new gene discovery.

View Article and Find Full Text PDF

Mental disorders (MDs), including schizophrenia (SCZ) and bipolar disorder (BD), have attracted special attention from scientists due to their high prevalence and significantly debilitating clinical features. The diagnosis of MDs is still essentially based on clinical interviews, and intensive efforts to introduce biochemical based diagnostic methods have faced several difficulties for implementation in clinics, due to the complexity and still limited knowledge in MDs. In this context, aiming for improving the knowledge in etiology and pathophysiology, many authors have reported several alterations in metabolites in MDs and other brain diseases.

View Article and Find Full Text PDF

Background: Sepsis is a severe illness that affects millions of people worldwide, and its early detection is critical for effective treatment outcomes. In recent years, researchers have used models to classify positive patients or identify the probability for sepsis using vital signs and other time-series variables as input.

Methods: In our study, we analyzed patients' conditions by their kinematics position, velocity, and acceleration, in a six-dimensional space defined by six vital signs.

View Article and Find Full Text PDF

Background And Objective: Malignant ventricular arrhythmias (MAs) occur unpredictably and lead to emergencies. A new approach that uses a timely tracking device e.g.

View Article and Find Full Text PDF

A biomarker is a measurable indicator of a disease or abnormal state of a body that plays an important role in disease diagnosis, prognosis and treatment. The biomarker has become a significant topic due to its versatile usage in the medical field and in rapid detection of the presence or severity of some diseases. The volume of biomarker data is rapidly increasing and the identified data are scattered.

View Article and Find Full Text PDF

Deep learning approaches are widely used to search molecular structures for a candidate drug/material. The basic approach in drug/material candidate structure discovery is to embed a relationship that holds between a molecular structure and the physical property into a low-dimensional vector space (chemical space) and search for a candidate molecular structure in that space based on a desired physical property value. Deep learning simplifies the structure search by efficiently modeling the structure of the chemical space with greater detail and lower dimensions than the original input space.

View Article and Find Full Text PDF

Background: Species of the genus Monascus are considered to be economically important and have been widely used in the production of yellow and red food colorants. In particular, three Monascus species, namely, M. pilosus, M.

View Article and Find Full Text PDF