ACS Appl Bio Mater
December 2024
Magnetic resonance imaging (MRI) is a popular imaging tool that is valuable for the early detection and monitoring of malignancies because it does not involve radiation and is noninvasive. Metal-based contrast agents (CAs) are commonly used in clinical settings despite concerns about the toxicity of free metals. Therefore, finding alternative nontoxic imaging probes is vital.
View Article and Find Full Text PDFNocturnal blood glucose regulation was one of the key challenges in diabetic treatments. However, development of the smart insulin complexes with mild and glucose-responsive delivering performances was mostly relied on experience of the senior researchers and numerous confirmation experiments. In this work, a series of bioinspired fatty-acid-modified glucose-responsive insulin-delivering polymeric nanoparticles were designed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2021
Self-assembled polymer vesicles have emerged as exciting and promising materials for their potential application in drug delivery, but the dynamics of stimuli-responsive polymers in these areas with pendant functionality in order to understand the structure-property relationship under different physicochemical conditions is still open to discussion. In this work, nitroxide radical-containing copolymers were synthesized and utilized to investigate local dynamics in their vesicular assemblies. Herein, electron paramagnetic resonance (EPR) spectroscopy was applied to reveal the smart supramolecular vesicular structure and polymer chain dynamics in stimuli-responsive controlled assemblies by considering molecular-level interactions.
View Article and Find Full Text PDFHypothesis: Organic radical polymers with tailored pendant functionalities have emerged as exciting and promising materials for their application versatility. Moreover, eco-friendly polymer-based organic nanomaterials with redox-active pendant side groups can replace the harmful heavy metal-based inorganic materials. On the other hand, self-assembled nanomaterials are of great interest and attracted more attention recently for their promising application in different advanced fields, but it is yet challenging to predict suitable hydrophilic-lipophilic balance (HLB) for stimuli-responsive random copolymers assembly due to structural irregularity.
View Article and Find Full Text PDF