Publications by authors named "Md Abu Shufean"

Purpose: Despite advances in molecular therapeutics, few anticancer agents achieve durable responses. Rational combinations using two or more anticancer drugs have the potential to achieve a synergistic effect and overcome drug resistance, enhancing antitumor efficacy. A publicly accessible biomedical literature search engine dedicated to this domain will facilitate knowledge discovery and reduce manual search and review.

View Article and Find Full Text PDF

The rapid growth and decreasing cost of Next-generation sequencing (NGS) technologies have made it possible to conduct routine large panel genomic sequencing in many disease settings, especially in the oncology domain. Furthermore, it is now known that optimal disease management of patients depends on individualized cancer treatment guided by comprehensive molecular testing. However, translating results from molecular sequencing reports into actionable clinical insights remains a challenge to most clinicians.

View Article and Find Full Text PDF

Purpose: Genomic analysis of individual patients is now affordable, and therapies targeting specific molecular aberrations are being tested in clinical trials. Genomically-informed therapy is relevant to many clinical domains, but is particularly applicable to cancer treatment. However, even specialized clinicians need help to interpret genomic data, to navigate the complicated space of clinical trials, and to keep up with the rapidly expanding biomedical literature.

View Article and Find Full Text PDF

Genomic testing has become a part of routine oncology care and plays critical roles in diagnosis, prognostic assessment, and treatment selection. Thus, in parallel, the variety of genomic testing providers and sequencing platforms has grown exponentially. Selection of the best-fit panel for each case can be daunting, with many factors to consider.

View Article and Find Full Text PDF

Purpose: Many targeted therapies are currently available only via clinical trials. Therefore, routine precision oncology using biomarker-based assignment to drug depends on matching patients to clinical trials. A comprehensive and up-to-date trial database is necessary for optimal patient-trial matching.

View Article and Find Full Text PDF

With the increasing availability of genomics, routine analysis of advanced cancers is now feasible. Treatment selection is frequently guided by the molecular characteristics of a patient's tumor, and an increasing number of trials are genomically selected. Furthermore, multiple studies have demonstrated the benefit of therapies that are chosen based upon the molecular profile of a tumor.

View Article and Find Full Text PDF

High-throughput genomic and molecular profiling of tumors is emerging as an important clinical approach. Molecular profiling is increasingly being used to guide cancer patient care, especially in advanced and incurable cancers. However, navigating the scientific literature to make evidence-based clinical decisions based on molecular profiling results is overwhelming for many oncology clinicians and researchers.

View Article and Find Full Text PDF

The anaplastic lymphoma kinase () gene plays an important physiologic role in the development of the brain and can be oncogenically altered in several malignancies, including non-small-cell lung cancer (NSCLC) and anaplastic large cell lymphomas (ALCL). Most prevalent alterations are chromosomal rearrangements resulting in fusion genes, as seen in ALCL and NSCLC. In other tumors, copy-number gains and activating mutations have been described.

View Article and Find Full Text PDF

Purpose: Precision oncology is hindered by the lack of decision support for determining the functional and therapeutic significance of genomic alterations in tumors and relevant clinically available options. To bridge this knowledge gap, we established a Precision Oncology Decision Support (PODS) team that provides annotations at the alteration-level and subsequently determined if clinical decision-making was influenced.

Methods: Genomic alterations were annotated to determine actionability based on a variant's known or potential functional and/or therapeutic significance.

View Article and Find Full Text PDF