Free radicals, generally formed through the cleavage of covalent electron-pair bonds, play an important role in diverse fields ranging from synthetic chemistry to spintronics and nonlinear optics. However, the characterization and regulation of the radical state at a single-molecule level face formidable challenges. Here we present the detection and sophisticated tuning of the open-shell character of individual diradicals with a donor-acceptor structure via a sensitive single-molecule electrical approach.
View Article and Find Full Text PDFHigh-spin donor-acceptor conjugated polymers are extensively studied for their potential applications in magnetic and spintronic devices. Inter-chain charge transfer among these high-spin polymers mainly depends on the nature of the local structure of the thin film and π-stacking between the polymer chains. However, the microscopic structural details of high-spin polymeric materials are rarely studied with an atomistic force field, and the molecular-level local structure in the liquid phase remains ambiguous.
View Article and Find Full Text PDFHigh-spin ground-state organic materials with unique spin topology can significantly impact molecular magnetism, spintronics, and quantum computing devices. However, strategies to control the spin topology and alignment of the unpaired spins in different molecular orbitals are not well understood. Here, we report modulating spin distribution along the molecular backbone in high-spin ground-state donor-acceptor (D-A) conjugated polymers.
View Article and Find Full Text PDFMost organic semiconductors have closed-shell electronic structures, however, studies have revealed open-shell character emanating from design paradigms such as narrowing the bandgap and controlling the quinoidal-aromatic resonance of the π-system. A fundamental challenge is understanding and identifying the molecular and electronic basis for the transition from a closed- to open-shell electronic structure and connecting the physicochemical properties with (opto)electronic functionality. Here, we report donor-acceptor organic semiconductors comprised of diketopyrrolopyrrole and naphthobisthiadiazole acceptors and various electron-rich donors commonly utilized in constructing high-performance organic semiconductors.
View Article and Find Full Text PDFPolyradical character and global aromaticity are fundamental concepts that govern the rational design of cyclic conjugated macromolecules for optoelectronic applications. Here, we report donor-acceptor (D-A) conjugated macromolecules with and without π-spacer derivatives to tune the antiferromagnetic couplings between the unpaired electrons. The macromolecules without π-spacer have a closed-shell electronic configuration and show global nonaromatic character in the singlet and lowest triplet states.
View Article and Find Full Text PDFIodine binding to thiophene rings in dyes for dye-sensitized solar cells (DSCs) has been hypothesized to be performance degrading in a number of literature cases. Binding of iodine to dyes near the semiconductor surface can promote undesirable electron transfers and lower the overall efficiency of devices. Six thiophene or furan containing dye analogs were synthesized to analyze iodine binding to the dyes via Raman spectroscopy, UV-Vis studies, device performance metrics and density functional theory (DFT) based computations.
View Article and Find Full Text PDF