Effective design of ultrafast new-generation photocatalysts is a challenging task that requires highly dedicated efforts. This research focused on the development and design of ultrafast smart ternary photocatalysts containing SrSnO nanostructures in conjugation with chitosan (CTSN) and silver (Ag) nanoparticles by a very simple and straightforward methodology. Modern analytical tools such as FESEM, TEM, XRD, XPS, FTIR, and UV-Vis spectroscopy were employed to characterize the synthesized nanostructures.
View Article and Find Full Text PDFModification and bandgap engineering are proposed to be extremely significant in improving the photocatalytic activity of novel photocatalysts. The current research focused on the fabrication of ultrafast and efficient visible light-responsive ternary photocatalyst containing g-CN nanostructures in conjugation with polypyrrole doped carbon black (PPy-C) and gold (Au) nanoparticles by highly effectual, simple, and straightforward methodology. Various analytical techniques like XRD, FESEM, TEM, XPS, FTIR, and UV-Vis spectroscopy were applied for characterization purposes.
View Article and Find Full Text PDFA voltammetric approach was developed for the selective and sensitive determination of hydrogen peroxide using Au plated porous silicon (PSi) nanopowder modified glassy carbon electrode (GCE). The AuNPs-PSi hybrid structure was synthesized via stain etching procedure followed by an immersion plating method to deposit AuNPs onto PSi via a simple galvanic displacement reaction with no external reducing agent to convert Au to Au. The as-fabricated AuNPs-PSi catalyst was successfully characterized by XRD, Raman, FTIR, XPS, SEM, TEM and EDS techniques.
View Article and Find Full Text PDFA new type of artificial giant liposome incorporating ion transport channels and using nanoparticles of metal organic frameworks was demonstrated. The micropores of Prussian blue nanoparticles served as ion transport channels between the outer and inner phases of liposomes.
View Article and Find Full Text PDFPd nanoparticles were electrochemically immobilized on a Pt surface in the presence of sodium dodecyl sulfate (SDS) molecules to study the electrokinetics of arsenite oxidation reactions and the corresponding sensing activities. The X-ray photoelectron spectroscopy (XPS) analysis showed that on the Pt surface, Pd atoms exist as adatoms and the contents of Pd(0) and Pd(ii) were 75.72 and 24.
View Article and Find Full Text PDFThe preparation of urea (bonded) cross-linked multilayer thin films by sequential deposition of bifunctional and tetrafunctional molecular building blocks is demonstrated. Multilayer growth as a function of deposition cycles was inspected using UV-vis absorption spectroscopy. From infrared results, three characteristic infrared bands of amide I, amide II, and asymmetric νa(N-C-N) stretching confirmed the formation of polyurea networks by alternate dipping into solutions of amine and isocyanate functionality monomers.
View Article and Find Full Text PDF