Different collision-activated dissociation (CAD) methods were evaluated for their effectiveness at distinguishing several ionized isomeric aromatic compounds by using a linear quadrupole ion trap/orbitrap mass spectrometer. The compounds were ionized by using atmospheric pressure chemical ionization (APCI) with carbon disulfide solvent in the positive ion mode to generate stable molecular ions with limited fragmentation. They were subjected to CAD in the linear quadrupole ion trap (ITCAD) and in an octupole collision cell (medium-energy collision-activated dissociation, MCAD; also known as HCD).
View Article and Find Full Text PDFA commercial fast pyrolysis probe coupled with a high-resolution tandem mass spectrometer was employed to identify the initial reactions and products of fast pyrolysis of xylobiose and xylotriose, model compounds of xylans. Fragmentation of the reducing end by loss of an ethenediol molecule via ring-opening and retro-aldol condensation was found to be the dominant pyrolysis pathway for xylobiose, and the structure of the product-β-d-xylopyranosylglyceraldehyde-was identified by comparing collision-activated dissociation of the ionized product and an ionized authentic compound. This intermediate can undergo further decomposition via the loss of formaldehyde to form β-d-xylopyranosylglycolaldehyde.
View Article and Find Full Text PDFGlucuronidation, a common phase II biotransformation reaction, is one of the major and metabolism pathways of xenobiotics. In this process, glucuronic acid is conjugated to a drug or a drug metabolite via a carboxylic acid, a hydroxy, or an amino group to form acyl-, -, and/or -glucuronide metabolites, respectively. This process is traditionally thought to be a detoxification pathway.
View Article and Find Full Text PDFEvaluation of the feasibility of various mechanisms possibly involved in cellulose fast pyrolysis is challenging. Therefore, selectively C-labeled cellotriose, O-labeled cellobiose, and C- and O-doubly-labeled cellobiose were synthesized and subjected to fast pyrolysis in an atmospheric pressure chemical ionization source of a linear quadrupole ion trap/orbitrap mass spectrometer. The initial products were immediately quenched, ionized using ammonium cations, and subsequently analyzed using the mass spectrometer.
View Article and Find Full Text PDFA full understanding of all possible elementary reactions applicable to cellulose fast pyrolysis is key to developing a comprehensive kinetic model for fast pyrolysis of cellulose. Since water is an observed product of fast pyrolysis of cellulose, the energetics of the dehydration reactions of cellulose were explored computationally by using density functional theory. Glucose and cellobiose were selected as the cellulose model compounds.
View Article and Find Full Text PDFIsomeric O- and N-glucuronides are common drug metabolites produced in phase II of drug metabolism. Distinguishing these isomers by using common analytical techniques has proven challenging. A tandem mass spectrometric method based on gas-phase ion/molecule reactions of deprotonated glucuronide drug metabolites with trichlorosilane (HSiCl) in a linear quadrupole ion trap mass spectrometer is reported here to readily enable differentiation of the O- and N-isomers.
View Article and Find Full Text PDFGas-phase reactivity of protonated model compounds with different functional groups toward trimethoxymethylsilane (TMMS) was studied to explore the utility of this reagent in mass spectrometric identification of specific functionalities for potentially rapid characterization of drug metabolites. Only protonated analytes with a carboxylic acid, a sulfone, or a sulfonamide functionality formed diagnostic adducts that had lost a methanol molecule upon reactions with TMMS. Collisionally activated dissociation (CAD) of these methanol-eliminated adduct ions (MS experiments) produced characteristic fragment ions of m/z 75, 105, and 123 for sulfones, while an additional methanol elimination was observed for carboxylic acids and sulfonamides.
View Article and Find Full Text PDFThe collision-activated fragmentation pathways and reaction mechanisms of 34 deprotonated model compounds representative of lignin degradation products were explored experimentally and computationally. The compounds were evaporated and ionized by using negative-ion mode electrospray ionization doped with NaOH to produce abundant deprotonated molecules. The ions were isolated and subjected to collision-activated dissociation (CAD).
View Article and Find Full Text PDFEur J Mass Spectrom (Chichester)
November 2015
A fast pyrolysis probe/linear quadrupole ion trap mass spectrometer combination was used to study the primary fast pyrolysis products (those that first leave the hot pyrolysis surface) of cellulose, cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose, as well as of cellobiosan, cellotriosan, and cellopentosan, at 600°C. Similar products with different branching ratios were found for the oligosaccharides and cellulose, as reported previously. However, identical products (with the exception of two) with similar branching ratios were measured for cellotriosan (and cellopentosan) and cellulose.
View Article and Find Full Text PDFA fast-pyrolysis probe/tandem mass spectrometer combination was utilized to determine the initial fast-pyrolysis products for four different selectively (13)C-labeled cellobiose molecules. Several products are shown to result entirely from fragmentation of the reducing end of cellobiose, leaving the nonreducing end intact in these products. These findings are in disagreement with mechanisms proposed previously.
View Article and Find Full Text PDF