Publications by authors named "McNitt-Gray J"

Objective: Our aim is to determine if data collected with inertial measurement units (IMUs) during steady-state running could be used to estimate ground reaction forces (GRFs) and to derive biomechanical variables (e.g., contact time, impulse, change in velocity) using lightweight machine-learning approaches.

View Article and Find Full Text PDF

Sport diversification provides opportunities for individuals to develop physical literacy, establish a growth mindset, become more agile in varied environments, and develop robust strategies to improve performance. One could say the same for biomechanists, who study the control and dynamics of human movements in the context of sport. Through the lens of sport, we have focused on the ongoing interaction between the nervous system, musculoskeletal system, and the environment by using integrated experimental and modelling approaches to study well-practiced, goal-directed tasks in controlled laboratory and realistic field settings.

View Article and Find Full Text PDF

Diabetic foot ulcers (DFUs) significantly affect the lives of patients and increase the risk of hospital stays and amputation. We suggest a remote monitoring platform for better DFU care. This system uses digital health metrics (scaled from 0 to 10, where higher scores indicate a greater risk of slow healing) to provide a comprehensive overview through a visual interface.

View Article and Find Full Text PDF

Generation of angular impulse during foot contact is regulated by controlling the relative orientation between the total body center of mass (CoM) and the reaction force (RF) applied to the feet. Between-task differences in initial CoM horizontal momentum were hypothesized to alter how forward angular impulse was generated during two forward translating tasks. Five skilled athletes performed standing (SFS) and running (RFS) forward somersaulting dives.

View Article and Find Full Text PDF

People post-stroke have an increased risk of falls compared to neurotypical individuals, partly resulting from an inability to generate appropriate reactions to restore balance. However, few studies investigated the effect of paretic deficits on the mechanics of reactive control strategies following forward losses of balance during walking. Here, we characterized the biomechanical consequences of reactive control strategies following perturbations induced by the treadmill belt accelerations.

View Article and Find Full Text PDF

Studying how elite athletes satisfy multiple mechanical objectives when initiating well-practiced, goal-directed tasks provides insights into the control and dynamics of whole-body movements. This study investigated the coordination of multiple body segments and the reaction force (RF) generated during foot contact when regulating forward angular impulse in backward translating tasks. Six highly skilled divers performed inward somersaults (upward and backward jump with forward rotation) and inward timers (upward and backward jump without rotation) from a stationary platform.

View Article and Find Full Text PDF

The field of biomechanics involves integrating a variety of data types such as waveform, video, discrete, and performance. These different sources of data must be efficiently and accurately associated to provide meaningful feedback to athletes, coaches, and healthcare professionals to prevent injury and improve rehabilitation/performance. There are many challenges in biomechanics research such as data storage, standardization, review, sharing, and accessibility.

View Article and Find Full Text PDF

Manual wheelchair (WC) users with spinal cord injury (SCI) experience shoulder pain and fatigue associated with their increased reliance on the upper extremity during activities of daily living (Bayley et al. 1987, "The Weight-Bearing Shoulder. The Impingement Syndrome in Paraplegics," J.

View Article and Find Full Text PDF

Understanding how individuals distribute mechanical demand imposed on their upper extremity during physically demanding activities provides meaningful insights to preserve function and mitigate detrimental mechanical loading of the shoulder. In this study, we hypothesized that parameterization of the shoulder net joint moment using four functional axes could characterize distribution tendencies about the shoulder during manual wheelchair propulsion and that regardless of demographics, a shoulder flexor dominant NJM distribution would be predominantly used by individuals with paraplegia (n = 130). Forces and kinematics of the upper extremity and trunk were quantified using motion capture and an instrumented wheel during steady state manual wheelchair propulsion at self-selected fast speeds on a stationary ergometer.

View Article and Find Full Text PDF

This study investigates the effect of initial leg angle on horizontal jump performance. Eleven highly skilled male and female long jumpers (national and Olympic level) performed a series of horizontal jumps for distance. Within-jumper differences in initial leg angle, normalized horizontal and net vertical impulses, contact time, and average reaction force during the impact interval, post-impact interval, and in total were measured using highspeed video (240 or 300 Hz) and a force plate (1200 Hz).

View Article and Find Full Text PDF

Golf shots off uneven terrain often require modifications in address position to complete the swing successfully. This study aimed to determine how golf players coordinate the legs to regulate linear and angular impulse (about an axis passing vertically through the center of mass) while modifying the lower extremity address position during the swing. Nine highly skilled golf players performed swings with a 6-iron under the Normal, Rear Leg Up and Target Leg Up conditions.

View Article and Find Full Text PDF

The paper reviews advances and insights relevant to comparing groups when the sample sizes are small. There are conditions under which conventional, routinely used techniques are satisfactory. But major insights regarding outliers, skewed distributions, and unequal variances (heteroscedasticity) make it clear that under general conditions they provide poor control over the type I error probability and can have relatively poor power.

View Article and Find Full Text PDF

This study aimed to understand how players coordinate the multi-joint control strategies of the rear and target legs to satisfy the lower extremity and whole-body mechanical objectives during the golf swing when hitting shots with different clubs. Highly skilled golf players (n = 10) performed golf swings with a 6-iron and a driver. Joint kinetics were calculated using ground reaction forces and segment kinematics to determine net joint moments (NJMs) during the interval of interest within the downswing.

View Article and Find Full Text PDF

A procedure for modeling wheelchair-users undergoing vibrations was developed. Experimental data acquired with a wheelchair simulator were used to develop a model of a seated wheelchair user. Maximum likelihood estimation procedure was used to determine the model complexity required to characterize wheelchair-user's response.

View Article and Find Full Text PDF

The pirouette turn is often initiated in neutral and externally rotated hip positions by dancers. This provides an opportunity to investigate how dancers satisfy the same mechanical objectives at the whole-body level when using different leg kinematics. The purpose of this study was to compare lower extremity control strategies during the turn initiation phase of pirouettes performed with and without hip external rotation.

View Article and Find Full Text PDF

Objective: To compare dancers' balance regulation at the whole-body level under increased rotational demands during the turn phase of turns with and without large center-of-mass (CM) translation (i.e., piqué vs pirouette turns).

View Article and Find Full Text PDF

This study determined how dancers regulated angular and linear impulse during the initiation of pirouettes of increased rotation. Skilled dancers (n = 11) performed single and double pirouette turns with each foot supported by a force plate. Linear and angular impulses generated by each leg were quantified and compared between turn types using probability-based statistical methods.

View Article and Find Full Text PDF

During initiation of a piqué turn, a dancer generates impulse to achieve the desired lateral translation and whole-body rotation. The goal of this study was to determine how individuals regulate impulse generation when initiating piqué turns with increased rotational demands. Skilled dancers (n=10) performed single (∼360°) and double (∼720°) piqué turns from a stationary position.

View Article and Find Full Text PDF

Our aim was to determine how skilled players regulate linear and angular impulse while maintaining balance during the golf swing. Eleven highly-skilled golf players performed swings with a 6-iron and driver. Components contributing to linear and angular impulse generated by the rear and target legs (resultant horizontal reaction force [RFh], RFh-angle, and moment arm) were quantified and compared across the group and within a player (α = .

View Article and Find Full Text PDF

Background: The considerable physical demand placed on the upper extremity during manual wheelchair propulsion is distributed among individual muscles. The strategy used to distribute the workload is likely influenced by the relative force-generating capacities of individual muscles, and some strategies may be associated with a higher injury risk than others. The objective of this study was to use forward dynamics simulations of manual wheelchair propulsion to identify compensatory strategies that can be used to overcome weakness in individual muscle groups and identify specific strategies that may increase injury risk.

View Article and Find Full Text PDF

Objective: Repetitive loading of the upper limb joints during manual wheelchair (WC) propulsion (WCP) has been identified as a factor that contributes to shoulder pain, leading to loss of independence and decreased quality of life. The purpose of this study was to determine how individual manual WC users with paraplegia modify propulsion mechanics to accommodate expected increases in reaction forces (RFs) generated at the pushrim with self-selected increases in WCP speed.

Methods: Upper extremity kinematics and pushrim RFs were measured for 40 experienced manual WC users with paraplegia while propelling on a stationary ergometer at self-selected free and fast propulsion speeds.

View Article and Find Full Text PDF

During the golf swing, the reaction forces applied at the feet control translation and rotation of the body-club system. In this study, we hypothesized that skilled players using a 6-iron would regulate shot distance by scaling the magnitude of the resultant horizontal reaction force applied to the each foot with minimal modifications in force direction. Skilled players (n = 12) hit golf balls using a 6-iron.

View Article and Find Full Text PDF