Publications by authors named "McManaman J"

Human milk delivers critical nutritional and immunological support to human infants. Milk fat globules (MFGs) and their associated membranes (MFGMs) contain the majority of milk lipids and many bioactive components that contribute to neonatal development and health, yet their compositions have not been fully defined, and the mechanisms responsible for formation of these structures remain incompletely understood. In this study, we used untargeted mass spectrometry to quantitatively profile the protein compositions of freshly obtained MFGs and their paired, physically separated MFGM fractions from 13 human milk samples.

View Article and Find Full Text PDF

Human milk is universally recognized as the preferred food for infants during the first 6 mo of life because it provides not only essential and conditionally essential nutrients in necessary amounts but also other biologically active components that are instrumental in protecting, communicating important information to support, and promoting optimal development and growth in infants. Despite decades of research, however, the multifaceted impacts of human milk consumption on infant health are far from understood on a biological or physiological basis. Reasons for this lack of comprehensive knowledge of human milk functions are numerous, including the fact that milk components tend to be studied in isolation, although there is reason to believe that they interact.

View Article and Find Full Text PDF
Article Synopsis
  • * Research on mice fed a Western diet showed that the dual agonist INT-767 significantly reduces liver fat accumulation, inflammation, and fibrosis, while also altering bile acid composition and decreasing liver lipid absorption.
  • * The study indicated that INT-767's effectiveness in mitigating NASH relies on FXR activation, as its benefits were absent in FXR-deficient mice but not in TGR5-deficient models, suggesting specific pathways for treatment.
View Article and Find Full Text PDF

Secretory epithelial cells (sMEC) in mammary glands of lactating animals secrete lipids by a novel apocrine mechanism in which cytoplasmic lipid droplets (LD) contact and are enveloped by elements of the apical plasma membrane (APM) before being released into the lumen of the gland as membrane bound structures. The molecular properties of LD-APM contacts and the mechanisms regulating LD membrane envelopment and secretion are not fully understood. Perilipin-2 (Plin2) is a constitutive LD protein that has been proposed to tether LD to the APM through formation of a complex with the transmembrane protein, butyrophilin1a1 (BTN) and the redox enzyme, xanthine oxidoreductase (XOR).

View Article and Find Full Text PDF

Foamy macrophages and microglia containing lipid droplets (LDs) are a pathological hallmark of demyelinating disorders affecting the central nervous system (CNS). We and others showed that excessive accumulation of intracellular lipids drives these phagocytes towards a more inflammatory phenotype, thereby limiting CNS repair. To date, however, the mechanisms underlying LD biogenesis and breakdown in lipid-engorged phagocytes in the CNS, as well as their impact on foamy phagocyte biology and lesion progression, remain poorly understood.

View Article and Find Full Text PDF

Cells in human milk are an untapped source, as potential "liquid breast biopsies", of material for investigating lactation physiology in a non-invasive manner. We used single cell RNA sequencing (scRNA-seq) to identify milk-derived mammary epithelial cells (MECs) and their transcriptional signatures in women with diet-controlled gestational diabetes (GDM) with normal lactation. Methodology is described for coordinating milk collections with single cell capture and library preparation via cryopreservation, in addition to scRNA-seq data processing and analyses of MEC transcriptional signatures.

View Article and Find Full Text PDF

Purpose: Provider burnout is a challenge adversely affecting the quality, safety, and cost of health care. We measured burnout among pediatric oncology providers in the St Jude Affiliate network and used a Plan-Do-Study-Act (PDSA) improvement cycle to address one of the factors contributing to burnout.

Methods: Within the framework of the ASCO Thematic Quality Training Program, we sent the Mini Z 2.

View Article and Find Full Text PDF

Milk-secreting epithelial cells of the mammary gland are functionally specialized for the synthesis and secretion of large quantities of neutral lipids, a major macronutrient in milk from most mammals. Milk lipid synthesis and secretion are hormonally regulated and secretion occurs by a unique apocrine mechanism. Neutral lipids are synthesized and packaged into perilipin-2 (PLIN2) coated cytoplasmic lipid droplets within specialized cisternal domains of rough endoplasmic reticulum (ER).

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease is a rapidly rising problem in the 21st century and is a leading cause of chronic liver disease that can lead to end-stage liver diseases, including cirrhosis and hepatocellular cancer. Despite this rising epidemic, no pharmacological treatment has yet been established to treat this disease. The rapidly increasing prevalence of nonalcoholic fatty liver disease and its aggressive form, nonalcoholic steatohepatitis (NASH), requires novel therapeutic approaches to prevent disease progression.

View Article and Find Full Text PDF

Lipid droplets (LD) are dynamically-regulated organelles that originate from the endoplasmic reticulum (ER), and function in the storage, trafficking and metabolism of neutral lipids. In mammary epithelial cells (MEC) of lactating animals, intact LD are secreted intact into milk to form milk lipids by a novel apocrine mechanism. The secretion of intact LD and the relatively large amounts of lipid secreted by lactating MEC increase demands on the cellular processes responsible for lipid synthesis and LD formation.

View Article and Find Full Text PDF

Key Points: Wild-type mice and mice with hepatocyte-specific or whole-body deletions of perilipin-2 (Plin2) were used to define hepatocyte and extra-hepatocyte effects of altered cellular lipid storage on obesity and non-alcoholic fatty liver disease (NAFLD) pathophysiology in a Western-diet (WD) model of these disorders. Extra-hepatocyte actions of Plin2 are responsible for obesity, adipose inflammation and glucose clearance abnormalities in WD-fed mice. Hepatocyte and extra-hepatic actions of Plin2 mediate fatty liver formation in WD-fed mice through distinct mechanisms.

View Article and Find Full Text PDF

Mice lacking perilipin-2 (Plin2-null) are resistant to obesity, insulin resistance, and fatty liver induced by Western or high-fat diets. In the current study, we found that, compared with WT mice on Western diet, Plin2-null adipose tissue was more insulin sensitive and inguinal subcutaneous white adipose tissue (iWAT) exhibited profound browning and robust induction of thermogenic and carbohydrate-responsive genetic programs at room temperature. Surprisingly, these Plin2-null responses correlated with the content of simple carbohydrates, rather than fat, in the diet, and were independent of adipose Plin2 expression.

View Article and Find Full Text PDF

Background/objectives: The current obesity epidemic has spurred exploration of the developmental origin of adult heath and disease. A mother's dietary choices and health can affect both the early wellbeing and lifelong disease-risk of the offspring.

Subjects/methods: To determine if changes in the mother's diet and adiposity have long-term effects on the baby's metabolism, independently from a prenatal insult, we utilized a mouse model of diet-induced-obesity and cross-fostering.

View Article and Find Full Text PDF

Background: Intestinal microbiota are critical determinants of obesity and metabolic disease risk. In previous work, we showed that deletion of the cytoplasmic lipid droplet (CLD) protein perilipin-2 (Plin2) modulates gut microbial community structure and abrogates long-term deleterious effects of a high-fat (HF) diet in mice. However, the impact of Plin2 on microbiome function is unknown.

View Article and Find Full Text PDF

Preventing obesity requires a precise balance between deposition into and mobilization from fat stores, but regulatory mechanisms are incompletely understood. Drosophila Split ends (Spen) is the founding member of a conserved family of RNA-binding proteins involved in transcriptional regulation and frequently mutated in human cancers. We find that manipulating Spen expression alters larval fat levels in a cell-autonomous manner.

View Article and Find Full Text PDF

Perilipin-2 (PLIN2) is a constitutively associated cytoplasmic lipid droplet coat protein that has been implicated in fatty liver formation in non-alcoholic fatty liver disease. Mice with or without whole-body deletion of perilipin-2 (Plin2-null) were fed either Western or control diets for 30 weeks. Perilipin-2 deletion prevents obesity and insulin resistance in Western diet-fed mice and dramatically reduces hepatic triglyceride and cholesterol levels in mice fed Western or control diets.

View Article and Find Full Text PDF

Key Points: Xanthine oxidoreductase (XOR) modulates milk lipid secretion and lactation initiation. XOR is required for butyrophilin1a1 clustering in the membrane during milk lipid secretion. XOR mediates apical membrane reorganization during milk lipid secretion.

View Article and Find Full Text PDF

Excess calorie consumption, particularly of a diet high in fat, is a risk factor for both obesity and reproductive disorders. Animal model studies indicate that elevated dietary fat can influence some reproductive functions independent of obesity. In the current study we sought to determine whether a high-fat diet (HFD) impacts ovarian function, long-term fertility, and local and systemic markers of inflammation independent of obesity.

View Article and Find Full Text PDF

Obesity and its co-morbidities, such as fatty liver disease, are increasingly prevalent worldwide health problems. Intestinal microorganisms have emerged as critical factors linking diet to host physiology and metabolic function, particularly in the context of lipid homeostasis. We previously demonstrated that deletion of the cytoplasmic lipid drop (CLD) protein Perilipin-2 (Plin2) in mice largely abrogates long-term deleterious effects of a high fat (HF) diet.

View Article and Find Full Text PDF

Maternal metabolic and nutrient trafficking adaptations to lactation differ among lean and obese mice fed a high fat (HF) diet. Obesity is thought to impair milk lipid production, in part, by decreasing trafficking of dietary and de novo synthesized lipids to the mammary gland. Here, we report that de novo lipogenesis regulatory mechanisms are disrupted in mammary glands of lactating HF-fed obese (HF-Ob) mice.

View Article and Find Full Text PDF
Lipid transport in the lactating mammary gland.

J Mammary Gland Biol Neoplasia

March 2014

Mammalian cells depend on phospholipid (PL) and fatty acid (FA) transport to maintain membrane structure and organization, and to fuel and regulate cellular functions. In mammary glands of lactating animals, copious milk secretion, including large quantities of lipid in some species, requires adaptation and integration of PL and FA synthesis and transport processes to meet secretion demands. At present few details exist about how these processes are regulated within the mammary gland.

View Article and Find Full Text PDF

Carbohydrates with high glycaemic index are proposed to promote the development of obesity, insulin resistance and fatty liver, but the mechanism by which this occurs remains unknown. High serum glucose concentrations are known to induce the polyol pathway and increase fructose generation in the liver. Here we show that this hepatic, endogenously produced fructose causes systemic metabolic changes.

View Article and Find Full Text PDF