Publications by authors named "McLane Watson"

Reducing calorie intake without malnutrition limits tumor progression but the underlying mechanisms are poorly understood. Here we show that dietary restriction (DR) suppresses tumor growth by enhancing CD8 T cell-mediated anti-tumor immunity. DR reshapes CD8 T cell differentiation within the tumor microenvironment (TME), promoting the development of effector T cell subsets while limiting the accumulation of exhausted T (Tex) cells, and synergizes with anti-PD1 immunotherapy to restrict tumor growth.

View Article and Find Full Text PDF
Article Synopsis
  • Coordination of cellular metabolism is crucial for effective CD8 T cell responses during infections, highlighting the role of cytosolic acetyl-CoA production.
  • The enzyme ATP citrate lyase (ACLY) is responsible for generating acetyl-CoA from citrate, and its absence leads T cells to rely on an alternative pathway involving acyl-CoA synthetase short-chain family member 2 (ACSS2) which uses acetate.
  • Both ACLY and ACSS2 are important for managing acetyl-CoA levels, impacting T cell function through modifications like histone acetylation and chromatin accessibility at key effector gene sites.
View Article and Find Full Text PDF

While checkpoint blockade immunotherapies have widespread success, they rely on a responsive immune infiltrate; as such, treatments enhancing immune infiltration and preventing immunosuppression are of critical need. We previously generated αPD-1 resistant variants of the murine HNSCC model MEER. While entirely αPD-1 resistant, these tumors regress after single dose of oncolytic vaccinia virus (VV).

View Article and Find Full Text PDF

Environmental nutrient availability influences T cell metabolism, impacting T cell function and shaping immune outcomes. Here, we identified ketone bodies (KBs)-including β-hydroxybutyrate (βOHB) and acetoacetate (AcAc)-as essential fuels supporting CD8 T cell metabolism and effector function. βOHB directly increased CD8 T effector (Teff) cell cytokine production and cytolytic activity, and KB oxidation (ketolysis) was required for Teff cell responses to bacterial infection and tumor challenge.

View Article and Find Full Text PDF

Background: Cellular immunotherapies for cancer represent a means by which a patient's immune system can be augmented with high numbers of tumor-specific T cells. Chimeric antigen receptor (CAR) therapy involves genetic engineering to 'redirect' peripheral T cells to tumor targets, showing remarkable potency in blood cancers. However, due to several resistance mechanisms, CAR-T cell therapies remain ineffective in solid tumors.

View Article and Find Full Text PDF

CD8 T cells are critical for elimination of cancer cells. Factors within the tumor microenvironment (TME) can drive these cells to a hypofunctional state known as exhaustion. The most terminally exhausted T (tT) cells are resistant to checkpoint blockade immunotherapy and might instead limit immunotherapeutic efficacy.

View Article and Find Full Text PDF

Zhang et al. (2022) show that TCR signaling promotes the phosphorylation and activation of glycogen phosphorylase B (PYGB) in CD8 memory T (Tmem) cells. PYGB-dependent glycogen mobilization provides a carbon source to support glycolysis and early Tmem cell recall responses.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how different carbon sources in cell culture affect the metabolism and function of CD8 T cells, focusing on their glucose usage.
  • The presence of physiologic carbon sources (like lactate) reduces glucose use in a way that enhances T cell activity and energy production, particularly during Listeria infection.
  • Inhibiting lactate metabolism in CD8 T cells negatively affects their growth and energy balance, highlighting lactate's important role as a fuel source.
View Article and Find Full Text PDF

As cancers progress, they produce a local environment that acts to redirect, paralyze, exhaust, or otherwise evade immune detection and destruction. The tumor microenvironment (TME) has long been characterized as a metabolic desert, depleted of essential nutrients such as glucose, oxygen, and amino acids, that starves infiltrating immune cells and renders them dysfunctional. While not incorrect, this perspective is only half the picture.

View Article and Find Full Text PDF

Regulatory T (T) cells, although vital for immune homeostasis, also represent a major barrier to anti-cancer immunity, as the tumour microenvironment (TME) promotes the recruitment, differentiation and activity of these cells. Tumour cells show deregulated metabolism, leading to a metabolite-depleted, hypoxic and acidic TME, which places infiltrating effector T cells in competition with the tumour for metabolites and impairs their function. At the same time, T cells maintain a strong suppression of effector T cells within the TME.

View Article and Find Full Text PDF

Limiting metabolic competition in the tumour microenvironment may increase the effectiveness of immunotherapy. Owing to its crucial role in the glucose metabolism of activated T cells, CD28 signalling has been proposed as a metabolic biosensor of T cells. By contrast, the engagement of CTLA-4 has been shown to downregulate T cell glycolysis.

View Article and Find Full Text PDF

Despite remarkable responses to cancer immunotherapy in a subset of patients, many patients remain resistant to these therapies. The tumor microenvironment can impose metabolic restrictions on T cell function, creating a resistance mechanism to immunotherapy. We have previously shown tumor-infiltrating T cells succumb to progressive loss of metabolic sufficiency, characterized by repression of mitochondrial activity that cannot be rescued by PD-1 blockade.

View Article and Find Full Text PDF

Asymmetric cell division is critical during development, as it influences processes such as cell fate specification and cell migration. We have characterized FRK-1, a homolog of the mammalian Fer nonreceptor tyrosine kinase, and found it to be required for differentiation and maintenance of epithelial cell types, including the stem cell-like seam cells of the hypodermis. A genomic knockout of frk-1, allele ok760, results in severely uncoordinated larvae that arrest at the L1 stage and have an excess number of lateral hypodermal cells that appear to have lost asymmetry in the stem cell-like divisions of the seam cell lineage.

View Article and Find Full Text PDF