Publications by authors named "McKittrick J"

Objectives: To determine if a priori standardization of outcome hemostatic definitions alone was adequate to enable useful comparison between two cohorts of pediatric extracorporeal membrane oxygenation (ECMO) patients, managed according to local practice and protocol.

Design: Comparison of two separate prospective cohort studies performed at different centers with standardized outcome definitions agreed upon a priori.

Setting: General and cardiac PICUs at the Royal Children's Hospital (RCH) in Melbourne, Australia, and the Sophia Children's Hospital (SCH) in Rotterdam, The Netherlands.

View Article and Find Full Text PDF

Background: Extracorporeal membrane oxygenation (ECMO) is used in children with cardiopulmonary failure. While the majority of ECMO centers use unfractionated heparin, other anticoagulants, including factor XI and factor XII inhibitors are emerging, which may prove suitable for ECMO patients. However, before these anticoagulants can be applied in these patients, baseline data of FXI and FXII changes need to be acquired.

View Article and Find Full Text PDF

Objectives: To investigate changes in von Willebrand factor (VWF) concentration, function, and multimers during pediatric extracorporeal membrane oxygenation (ECMO) and determine whether routine monitoring of VWF during ECMO would be useful in predicting bleeding.

Design: Prospective observational study of pediatric ECMO patients from April 2017 to May 2019.

Setting: The PICU in a large, tertiary referral pediatric ECMO center.

View Article and Find Full Text PDF

Purpose: Several cases of symptomatic reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after full recovery from a prior episode have been reported. As reinfection has become an increasingly common phenomenon, an improved understanding of the risk factors for reinfection and the character and duration of the serological responses to infection and vaccination is critical for managing the coronavirus disease 2019 (COVID-19) pandemic.

Methods: We described four cases of SARS-CoV-2 reinfection in individuals representing a spectrum of healthy and immunocompromised states, including (1) a healthy 41-year-old pediatrician, (2) an immunocompromised 31-year-old with granulomatosis with polyangiitis, (3) a healthy 26-year-old pregnant woman, and (4) a 50-year-old with hypertension and hyperlipidemia.

View Article and Find Full Text PDF

Objectives: To investigate platelet pathophysiology associated with pediatric extracorporeal membrane oxygenation (ECMO).

Design: Prospective observational study of neonatal and pediatric ECMO patients from September 1, 2016, to December 31, 2019.

Setting: The PICU in a large tertiary referral pediatric ECMO center.

View Article and Find Full Text PDF

Introduction: Digital healthcare technologies are transforming the face of prosthetic care. Millions of people with limb loss around the world do not have access to any form of rehabilitative healthcare. However, digital technologies provide a promising solution to augment the range and efficiency of prosthetists.

View Article and Find Full Text PDF

Bone is a biological composite material consisting of two main components: collagen and mineral. Collagen is the most abundant protein in vertebrates, which makes it of high clinical and scientific interest. In this paper, we compare the composition and structure of cortical bone demineralized using several protocols: ethylene-diamine-tetraacetic acid (EDTA), formic acid (CHO), hydrochloric acid (HCl), and HCl/EDTA mixture.

View Article and Find Full Text PDF

Chitons are herbivorous invertebrates that use rows of ultrahard magnetite-based teeth connected to a flexible belt (radula) to rasp away algal deposits growing on and within rocky outcrops along coastlines around the world. Each tooth is attached to the radula by an organic structure (stylus) that provides mechanical support during feeding. However, the underlying structures within the stylus, and their subsequent function within the chiton have yet to be investigated.

View Article and Find Full Text PDF

The silica cell walls of diatoms, the abundant microalga 1-100 μm in size, show a highly ordered hierarchical porosity and are widely available through their fossilized form known as diatomite. The goal of this research was to use this cost-effective source of porous silica in a unidirectional freezing process called ice-templating, or freeze casting, to create a ceramic membrane with unidirectional lamellar walls of ∼15 μm channels, which allows for an efficient mass transport of fluids (i.e.

View Article and Find Full Text PDF

Biological materials tested in compression, tension, and impact inspire designs for strong and tough materials, but torsion is a relatively neglected loading mode. The wood skeletons of cholla cacti, subject to spartan desert conditions and hurricane force winds, provide a new template for torsionally resilient biological materials. Novel mesostructural characterization methods of laser-scanning and photogrammetry are used alongside traditional optical microscopy, scanning electron microscopy, and micro-computed tomography to identify mechanisms responsible for torsional resistance.

View Article and Find Full Text PDF

Biological materials found in Nature such as nacre and bone are well recognized as light-weight, strong, and tough structural materials. The remarkable toughness and damage tolerance of such biological materials are conferred through hierarchical assembly of their multiscale (i.e.

View Article and Find Full Text PDF

Respiratory rate is assessed less frequently than other vital signs, and documented respiratory rates are often erroneous. This pilot study compared respiratory rates derived from a wearable biosensor to those derived from capnography. Emergency department patients with respiratory complaints were enrolled and had capnography via nasal cannula and a wireless, wearable biosensor from Philips applied for approximately one hour.

View Article and Find Full Text PDF

As with most biological materials, natural bone has hierarchical structure. The microstructural features of compact bone are of various length scales with its porosity consisting of larger osteons (∼100 μm diameter) and vascular channels, as well as smaller lacuna spaces (∼10 μm diameter). In this study, the freeze-casting process, which has been previously used to form biocompatible porous scaffolds (made with hydroxyapatite, HA) has been improved to mimic the intrinsic hierarchical structure of natural bone by implementing an extrinsic 3D printed template.

View Article and Find Full Text PDF

The equine hoof has been considered as an efficient energy absorption layer that protects the skeletal elements from impact when galloping. In the present study, the hierarchical structure of a fresh equine hoof wall and the energy absorption mechanisms are investigated. Tubules are found embedded in the intertubular matrix forming the hoof wall at the microscale.

View Article and Find Full Text PDF

Bone is a biological composite material having collagen and mineral as its main constituents. In order to better understand the arrangement of the mineral phase in bone, porcine cortical bone was deproteinized using different chemical treatments. This study aims to determine the best method to remove the protein constituent while preserving the mineral component.

View Article and Find Full Text PDF

Animal horns play an important role during intraspecific combat. This work investigates the microstructure and mechanical properties of horns from four representative ruminant species: the bighorn sheep (), domestic sheep (), mountain goat () and pronghorn (), aiming to understand the relation between evolved microstructures and mechanical properties. Microstructural similarity is found where disc-shaped keratin cells attach edge-to-edge along the growth direction of the horn core (longitudinal direction) forming a lamella; multiple lamellae are layered face to face along the impact direction (radial direction, perpendicular to horn core growth direction), forming a wavy pattern surrounding a common feature, the tubules.

View Article and Find Full Text PDF

Woodpeckers peck at trees without any reported brain injury despite undergoing high impact loads. Amongst the adaptations allowing this is a highly functionalized impact-absorption system consisting of the head, beak, tongue and hyoid bone. This study aims to examine the anatomical structure, composition, and mechanical properties of the skull to determine its potential role in energy absorption and dissipation.

View Article and Find Full Text PDF

Inadequate resuscitation leads to death or brain injury. Recent recommendations for resuscitation team training to complement knowledge and skills training highlighted the need for development of an effective team resuscitation training session. This study aimed to evaluate and revise an interprofessional team training session which addressed roles and performance during provision of paediatric resuscitation, through incorporation of real-time, real team simulated training episodes.

View Article and Find Full Text PDF

Unlabelled: Bighorn sheep (Ovis canadensis) rams hurl themselves at each other at speeds of ∼9 m/s (20 mph) to fight for dominance and mating rights. This necessitates impact resistance and energy absorption mechanisms, which stem from material-structure components in horns. In this study, the material hierarchical structure as well as correlations between the structure and mechanical properties are investigated.

View Article and Find Full Text PDF

Almost all species of modern birds are capable of flight; the mechanical competency of their wings and the rigidity of their skeletal system evolved to enable this outstanding feat. One of the most interesting examples of structural adaptation in birds is the internal structure of their wing bones. In flying birds, bones need to be sufficiently strong and stiff to withstand forces during takeoff, flight, and landing, with a minimum of weight.

View Article and Find Full Text PDF

Magnetic freeze casting utilizes the freezing of water, a low magnetic field and surface magnetized materials to make multi-axis strengthened porous scaffolds. A much greater magnetic moment was measured for larger magnetized alumina platelets compared with smaller particles, which indicated that more platelet aggregation occurred within slurries. This led to more lamellar wall alignment along the magnetic field direction during magnetic freeze casting at 75 mT.

View Article and Find Full Text PDF

Bone consists of a hard mineral phase and a compliant biopolymer phase resulting in a composite material that is both lightweight and strong. Osteoporosis that degrades spongy bone preferentially over time leads to bone brittleness in the elderly. A porous ceramic material that can mimic spongy bone for a one-time implant provides a potential solution for the future needs of an aging population.

View Article and Find Full Text PDF

This paper explores the structure, composition, and mechanical properties of porcupine fish spines for the first time. The spine was found to be composed of nanocrystalline hydroxyapatite, protein (collagen), and water using X-ray diffraction, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. Microstructures have mineralized fibrillar sheets in the longitudinal direction and in a radial orientation in the transverse direction that were observed using light and electron microscopy.

View Article and Find Full Text PDF

Unlabelled: Animal propulsion systems are believed to show high energy and mechanical efficiency in assisting movement compared to artificial designs. As an example, batoid fishes have very light cartilaginous skeletons that facilitate their elegant swimming via enlarged wing-like pectoral fins. The aim of this work is to illustrate the hierarchical structure of the pectoral fin of a representative batoid, the Longnose Skate (Raja rhina), and explain the mechanical implications of its structural design.

View Article and Find Full Text PDF

 Patients are usually advised not to consume caffeine following digital replantation. This study examined the effect of caffeine on blood flow distal to the site of anastomosis in the femoral arteries of rats.  A total of 28 Sprague-Dawley rats were used for this study.

View Article and Find Full Text PDF