J Neuroinflammation
October 2021
Background: Brain-resident microglia have a distinct origin compared to macrophages in other organs. Under physiological conditions, microglia are maintained by self-renewal from the local pool, independent of hematopoietic progenitors. Pharmacological depletion of microglia during whole-brain radiotherapy prevents synaptic loss and long-term recognition memory deficits.
View Article and Find Full Text PDFIn the coming decade, astronauts will travel back to the moon in preparation for future Mars missions. Exposure to galactic cosmic radiation (GCR) is a major obstacle for deep space travel. Using multivariate principal components analysis, we found sex-dimorphic responses in mice exposed to accelerated charged particles to simulate GCR (GCRsim); males displayed impaired spatial learning, whereas females did not.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is one of the leading causes of long-term neurological disability in the world. Currently, there are no therapeutics for treating the deleterious consequences of brain trauma; this is in part due to a lack of complete understanding of cellular processes that underlie TBI-related pathologies. Following TBI, microglia, the brain resident immune cells, turn into a "reactive" state characterized by the production of inflammatory mediators that contribute to the development of cognitive deficits.
View Article and Find Full Text PDFMild repetitive traumatic brain injury (rTBI) induces chronic behavioral and cognitive alterations and increases the risk for dementia. Currently, there are no therapeutic strategies to prevent or mitigate chronic deficits associated with rTBI. Previously we developed an animal model of rTBI that recapitulates the cognitive and behavioral deficits observed in humans.
View Article and Find Full Text PDF