Publications by authors named "McIlwain J"

The El Niño Southern Oscillation (ENSO) is a worldwide climate phenomenon impacting temperatures and precipitation regimes across the globe. Previous studies have shown this climate phenomenon to influence Malaysian Borneo's hydroclimate. In the context of a changing climate and increasingly strong extreme ENSO events, understanding the influence of ENSO on this region, and its evolution through time, is essential to better constrain the future impacts it will have on the Maritime Continent's hydroclimate.

View Article and Find Full Text PDF

Background: Emergency medical services (EMS) clinicians demonstrate a high prevalence of chronic medical conditions that place them at risk for early mortality. Workplace health promotion programs improve health outcomes, but the availably of such programs for EMS clinicians has not been described. We investigate the availability, scope, and participation of workplace health promotion programs available to EMS clinicians in North Carolina (NC).

View Article and Find Full Text PDF

Encrusting reef organisms such as crustose coralline algae (CCA), serpulid worms, bivalves, bryozoans, and foraminifera (collectively termed encrusters) provide essential ecosystem services and are a critical part of the reef framework. Globally, research into in situ growth and carbonate production of encrusters has focused on clear water fore-reef settings in the Pacific and Caribbean, with limited studies being conducted on marginal reef systems or within the Indian Ocean. Here we examined spatial and temporal variation in CCA coverage (%) and total encruster carbonate production rates (g cm yr) across two inshore turbid island reefs of northern Western Australia.

View Article and Find Full Text PDF

Background: Social determinants of health (SDoH) have significant implications for health outcomes in the United States. Emergency departments (EDs) function as the safety nets of the American health care system, caring for many vulnerable populations. ED-based interventions to assess social risk and mitigate social needs have been reported in the literature.

View Article and Find Full Text PDF

Genetic structure within marine species may be driven by local adaptation to their environment, or alternatively by historical processes, such as geographic isolation. The gulfs and seas bordering the Arabian Peninsula offer an ideal setting to examine connectivity patterns in coral reef fishes with respect to environmental gradients and vicariance. The Red Sea is characterized by a unique marine fauna, historical periods of desiccation and isolation, as well as environmental gradients in salinity, temperature, and primary productivity that vary both by latitude and by season.

View Article and Find Full Text PDF

Extreme climate events, such as the El Niños in 1997/1998 and 2015/16, have led to considerable forest loss in the Southeast Asian region following unprecedented drought and wildfires. In Borneo, the effects of extreme climate events have been exacerbated by rapid urbanization, accelerated deforestation and soil erosion since the 1980s. However, studies quantifying the impact of interannual and long-term (>3 decades) climatic and anthropogenic change affecting Borneo's coastal and coral reef environments are lacking.

View Article and Find Full Text PDF

For reefs in South East Asia the synergistic effects of rapid land development, insufficient environmental policies and a lack of enforcement has led to poor water quality and compromised coral health from increased sediment and pollution. Those inshore turbid coral reefs, subject to significant sediment inputs, may also inherit some resilience to the effects of thermal stress and coral bleaching. We studied the inshore turbid reefs near Miri, in northwest Borneo through a comprehensive assessment of coral cover and health in addition to quantifying sediment-related parameters.

View Article and Find Full Text PDF

Millions of people take animal pictures during wildlife interactions, yet the impacts of photographer behaviour and photographic flashes on animals are poorly understood. We investigated the pathomorphological and behavioural impacts of photographer behaviour and photographic flashes on 14 benthic fish species that are important for scuba diving tourism and aquarium displays. We ran a field study to test effects of photography on fish behaviour, and two laboratory studies that tested effects of photographic flashes on seahorse behaviour, and ocular and retinal anatomy.

View Article and Find Full Text PDF

Scuba diving tourism is a sustainable source of income for many coastal communities, but can have negative environmental impacts if not managed effectively. Diving on soft sediment habitats, typically referred to as 'muck diving', is a growing multi-million dollar industry with a strong focus on photographing cryptobenthic fauna. We assessed how the environmental impacts of scuba divers are affected by the activity they are engaged in while diving and the habitat they dive in.

View Article and Find Full Text PDF

As ecosystems come under increasing anthropogenic pressure, rare species face the highest risk of extinction. Paradoxically, data necessary to evaluate the conservation status of rare species are often lacking because of the challenges of detecting species with low abundance. One group of fishes subject to this undersampling bias are those with cryptic body patterns.

View Article and Find Full Text PDF

Bluespine unicornfish Naso unicornis and orangespine unicornfish Naso lituratus were sampled in Pohnpei and Guam, Micronesia, over 13 months to identify reproductive and age-based demographic features necessary for informed management. Age and reproductive information were derived from analysis of sagittal otoliths and gonads. Both species had moderate life spans [maximum ages of 23 (N.

View Article and Find Full Text PDF

In recent decades, spearfishing with SCUBA has emerged as an efficient method for targeting reef fish in deeper waters. However, deeper waters are increasingly recognised as a potential source of refuge that may help sustain fishery resources. We used a combination of historical catch data over a 20-year time period and fishery-independent surveys to investigate the effects of SCUBA spearfishing on coral reef fish populations in the southern Mariana Islands.

View Article and Find Full Text PDF

Much progress has been made toward understanding marine metapopulation dynamics, largely because of multilocus microsatellite surveys able to connect related individuals within the metapopulation. However, most studies are focused on small spatial scales, tens of kilometers, while demographic exchange at larger spatial scales remains poorly documented. Additionally, many small-scale demographic studies conflict with broad-scale phylogeographic patterns concerning levels of marine population connectivity, highlighting a need for data on more intermediate scales.

View Article and Find Full Text PDF

We used microsatellite markers to assess the population genetic structure of the scribbled rabbitfish Siganus spinus in the western Pacific. This species is a culturally important food fish in the Mariana Archipelago and subject to high fishing pressure. Our primary hypothesis was to test whether the individuals resident in the southern Mariana Island chain were genetically distinct and hence should be managed as discrete stocks.

View Article and Find Full Text PDF

Parrotfishes and surgeonfishes perform important functional roles in the dynamics of coral reef systems. This is a consequence of their varied feeding behaviors ranging from targeted consumption of living plant material (primarily surgeonfishes) to feeding on detrital aggregates that are either scraped from the reef surface or excavated from the deeper reef substratum (primarily parrotfishes). Increased fishing pressure and widespread habitat destruction have led to population declines for several species of these two groups.

View Article and Find Full Text PDF

Recruitment overfishing (the reduction of a spawning stock past a point at which the stock can no longer replenish itself) is a common problem which can lead to a rapid and irreversible fishery collapse. Averting this disaster requires maintaining a sufficient spawning population to buffer stochastic fluctuations in recruitment of heavily harvested stocks. Optimal strategies for managing spawner biomass are well developed for temperate systems, yet remain uncertain for tropical fisheries, where the danger of collapse from recruitment overfishing looms largest.

View Article and Find Full Text PDF